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I. INTRODUCTION 

In control and communication systems, it is often desirable to 

insert a network that will freely pass currents of one band of frequencies 

but that will greatly attenuate currents of frequencies outside this band. 

Such selective networks are called filters. This shaping of amplitude 

or phase with respect to frequencies is based on electrical properties 

of inductances, capacitances, and resistances. These lead to a description 

of the performance of a network by a set of linear differential equations. 

By contrast, a set of linear difference equations is used to describe 

a discrete linear system. These equations are realized in a special or 

a general purpose digital computer. 

The justification for the use of digital methods is based on the 

advantages of inherent stability and accuracy, on greater variety of 

digital filters which can be built, and on simple components needed for 

time-varying parameters, all of which are problem areas on analog circuits. 

In addition, the rapid advances in integrated-circuit technology coupled 

with increasingly sophisticated signal filtering have made filtering by 

digital techniques more and more feasible. 

Linear digital filter theory is largely the results of James, 

Nichols and Phillips (14), Truxal (35), Ragazzini and Franklin (32), 

and Blackman (1). Boxer and Thaler (3), Kaiser (17), and Carney (7) 

are some who have made initial steps towards the development of design 

techniques from the point of view of frequency selectivity. 

Most of digital filter design techniques are formulated in the 

frequency domain. Rader and Gold (31), Rader (30), Golden (10), and 
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Otens (26) have summarized these frequency-demain methods. A major 

distinction can be made between functions of sampled-data digital filter 

and digital filter. The sampled-data digital filter operates on signals 

that have been quantized in time by a sampling device, whereas the 

digital filter requires data that have been quantized in both time and 

amplitude, and then encoded into binary form for digital processing. 

The design of a sampled-data digital filter often begins with a 

requirement to find a digital approximation for some continuous filter. 

Various methods have been described for mapping a given analog filter 

into a digital form. Transforms that permit formulation of digital 

filter transfer function from an analog filter transfer function are 

called z-transforms or sampled-data transforms. Three special transforms 

that find the greatest applications are the impulse invariant z-transform, 

the bilinear z-transform, and the matched z-transform. But, unfortunately, 

not all of these techniques produce filters that have the same degree 

of stability as their analog counterparts. 

Burrs and Parks (6) have studied a time-domain design technique 

which has a desired impulse response over a specified interval. The 

description of the time-domain technique is in terms of the z-transform 

transfer function with undetermined coefficients. This synthesis method 

is to find those unknown coefficients such that the impulse response of 

the transfer function approximates in some sense a given continuous 

impulse response. Several design procedures that require only linear 

calculations are given for approximate realization of digital filter 

transfer function. 
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In the analog filters, the realization of a given filter transfer 

function is a difficult problem that has received considerable attention. 

For the sampled-data digital filter, the digital computer realization is 

almost trivial. But, for an accurate digital filter implementation, 

selection of the implementation scheme is important. The effects of 

different transformations, coefficient word length, computational word 

length, sampling rate have to be predicted and verified for the realiza

tion of the digital filter after the sampled-data filter has been selected. 

The problems caused by quantization of the sampled-data digital filter 

have been discussed by Gold and Rader (9), and Knowles and Olcayto (22). 

Digital filter implementation has been confined primarily to 

conçuter programs for simulation works or for processing relatively 

small amounts of data, usually not in real time. Conveniently, the 

digital conçuter provides printouts of all coefficients as well as 

frequency responses of amplitude and phase, and transient response. 

However, the rapid development of the integrated-circuit technology and 

especially the potential for large-scale integration of digital circuits 

now makes it possible for the digital filter to be constructed from a 

small set of relatively simple digital circuits. 

Jackson, Kaiser and McDonald (13), and White and Mitsutomi (37) 

show that the digital filter may be implemented inexpensively by a 

building block method using integrated-circuit chips. Adders, multipliers, 

shift registers, address logic, control logic, and timing logic are 

contained in a few chips, and convert the mathematics into circuits. 

This special digital filter is optimized for the applications. As an 
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example, a recursive digital filter design technique is developed for 

airborne applications that enables the filter designer to minimize 

computer word-length requirements, and, at the same time, meet essential 

practical constraints. 

When filters are considered from the point of view of optimization, 

performance criteria have to be introduced. The criteria should be 

relevant to the purpose of the filter, such as the separation of signals 

from noise, and quantitative evaluation of the filter against the selected 

performance criteria should be analytically tractable. Then the filter 

is synthesized according to the chosen criteria, such as the minimum 

mean-square error. 

The initial significant contribution to this problem was made by 

Wiener (38). He synthesized the optimum linear, minimum mean-square-

error filter for the case where the measurement and signal are continuous 

time and stationary random processes. The optimization procedure always 

leads to a Wiener-Hopf integral equation of the first kind which is 

difficult to solve in most cases. Bode and Shannon (2) solved Wiener 

filter problem in a more general form than that of James, Nichols and 

Phillips (14), and their solution is essentially an analysis from a 

frequency-domain viewpoint of the same problem Wiener considered in 

time domain. 

Kalman and Bucy (19), (21) then solved the same problem in an 

entirely different way. They assumed that the vector signal process 

could be characterized as the state variables of a linear dynamical 
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system excited by uncorrelated noise. The measurement process is then 

assumed to be a linear transform of the state vector, corrupted by a 

vector noise process. The "Kalman filter," which includes both Kalman-

Bucy continuous filter and discrete Kalman filter, is the result of 

the pioneering works by tliem. The optimality of the Kalman filter 

requires two assumptions: the linearity of the dynamical system, and 

the complete knowledge of the a priori Gaussian statistics of the 

random processes involved. 

Kalman (20) also proved that the covariance of the error between 

the actual state and filter's estimate of the state converges to an 

equilibrium state irrespective of the initial state when the dynamical 

system is uniformly completely controllable and uniformly completely 

observable* This stability is investigated further for the case where 

there is insufficient knowledge of a priori information by Nishmura (25), 

Sorenson (34), Griffin and Sage (12), and Price (29). Schlee, Standish 

and Toda (33) investigated the problems of divergence in the Kalman 

filter implementation. 

The primary intent of this dissertation is to develop a systematic 

design approach for digital implementation of any continuous filter 

whose transfer function is given as a ratio of two polynomials in the 

complex frequency variable s. When the continuous filter is given in 

terms of a weighting function or a fundamental differential equation 

describing the filter, the system transfer function of tl-.o continuous 

filter is obtained from them without any problem for is iust the 

transform of the other. 
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The development begins with an equivalent Kalman-Bucy filter, 

which is composed of a fixed-gain scalar-measurement Kalman-Bucy filter 

and an additional output equation. The state representation of the 

denominator of the continuous filter transfer function leads to the fixed-

gain Kalman-Bucy filter and that of the numerator becomes the output 

equation. Even if both filters have been started from different design 

viewpoints (for example, the continuous filter is for frequency 

selectivity of signals, and the Kalman-Bucy filter is for state 

estimation of signals), they satisfy the same purpose for the separation 

of signals from noise. Since the equivalent Kalman-Bucy filter behaves 

the same as the classical continuous filter, not only in the steady 

state but also in the transient state, the gain in the equivalent 

Kalman-Bucy filter has to be fixed. Being an optimum filter, the 

equivalent Kalman-Bucy filter needs more information about signal and 

noise. As a result of this, the linear dynamical system, system noise, 

and measurement noise characteristics have to be imagined and added 

to the continuous filter assignments. The input signal of the equivalent 

Kalman-Bucy filter is supposed to be generated by those imagined 

stochastic process models. The fixed-gain Kalman-Bucy filter of the 

equivalent Kalman-Bucy filter becomes an optimum filter to these imagined 

models. Noise statistics in the stochastic signal and measurement 

process models are assumed to be simple so that the matrix Riccati-type 

steady-state covariance equation is represented as a set of simple 

first-order linear differential equations. 



www.manaraa.com

7 

The next step is the discretization of the derived fixed-gain 

Kalman-Bucy filter and the output equation, which are equivalent to the 

given continuous filter. The advantage of this approach is that the 

conversion to discrete form is quite a routine process. The derived 

fixed-gain Kalman-Bucy filter is discretized to be a form of discrete 

Kalman filter, and the output equation is not changed except for the 

discretization of continuous time. Since the gain is also fixed after 

discretization, the discretized equivalent Kalman-Bucy filter can be 

simplified, which is called the discrete Kalman-Bucy derived filter. 

To compare the resulting discrete Kalman-Bucy derived filter to 

various z-transform derived filters, the amount of digital hardware 

requirements is estimated, and the fidelity of each in terms of frequency 

response is derived. 

As an aid to understanding the development of the new filter design 

approach, a tutorial survey of Kalman-Bucy filter and discrete Kalman 

filter is presented in the following chapter. 

Before describing the new approach of the filter design, the 

classical design methods are reviewed in the preceding chapter. The 

the purpose of comparison to the new filter method, the z-transform 

approaches are summarized. 
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II. KALMAN-BUCY FILTER AND DISCRETE KALMAN FILTER 

The Kalman filter is an optimal filter that estimates the states 

of a linear dynamic system from measurement data which are linearly 

related to the states. When this system is driven by white Gaussian 

noises, and when a set of noisy sequential measurements are processed, 

the Kalman filter provides the minimum variance, unbiased estimate 

of the system state. The basic feature of this filter consists of two 

parts, the state estimator and the gain computation. 

The state estimator is updated by a sequence of measurements so 

as to minimize its variance, or equivalently in Gaussian statistics, 

to maximize the conditional probability density of the current states 

after having a set of measurements. In this estimator, the a priori 

estimation error from the updated measurement is weighted by a gain 

factor which is a solution of the gain computation. 

The error covariance matrix associated with the gain computation 

is used as the statistical description of the error in the estimate. 

The covariance matrix equation is of the Riccati-type nonlinear equation. 

Since this statistical measure is independent of the measurement data, 

it can be computed from the system matrices and a priori statistics. 

Thus, this covariance matrix can be examined before applying the filter 

to an actual realization of a physical system in order to determine 

whether the expected response is satisfactory. 

This filter design assumes a priori knowledge of the initial 

states and their variances as well as complete knowledge of system 
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dynamics and noise statistics. Then the estimation procedure is expressed 

as a set of recursion relationships. 

In this chapter, the statistical models of the signal and the noise 

processes considered in this dissertation will first be defined. Then 

the "Kalman filter," including both Kalman-Bucy continuous filter and 

discrete Kalman filter, will be reviewed to show how the minimum mean-

square-error estimates can be obtained. In the succeeding discussion, 

the error covariance matrix will be examined with the intent of 

establishing conditions that must be satisfied to assure stability of 

the filters. The concepts of observability and controllability play a 

key role for this stability, 

A. Kalman-Bucy Filter 

The statistical model of the signal process is assumed to be 

described by the continuous, linear differential equation 

L(t) = F(t)L(t) + G(t)u(t) (2-1) 

where 

|_(t) is a kg vector of states with 

E{L(0)} = 0, 

u(t) is a k^ vector stochastic input of the signal 

process with 

E{u(t)} = 0 for all t, 

E{H.(t)u(T)'} = Q(t)6(t-T )  for all t and T.  

Here Q(t) is a k^ X k^ symmetric nonnegative-definite 
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matrix, 6(t) is a Dirac delta function, E{*} is an 

expectation value of *, and u(t)' is a transpose of u(t), 

F(t) is a X system matrix, and 

G(t) is a kç X input matrix. 

The statistical model of the measurement process is assumed to 

be described by the equation 

2.(t) = H(t)|_(t) + v(t) (2-2) 

where 

^(t) is a ky measurement vector, 

v(t) is a k measurement noise vector with 
y 

E{v(t)} = 0 for all t, 

E{v(t)v(T ) ' }  = R(t)6(t-T) for all t and T.  

Here R(t) is a k^ X k^ symmetric positive-definite 

matrix, and 

H(t) is a k^ X measurement matrix. 

It is also assumed that the process noise u(t) and the measurement 

noise v(t) are uncorrelated. That is 

E{ii(t)v(T)'] = 0 for all t and T. (2-3) 

Then an estimate of |_(t), given the measurement Y(% ) where T is 

0 ̂  T ̂  s, is denoted by ^(t|s). When t > s, it denotes a prediction, 

t = s, it denotes a filtering, and t < s, it denotes a smoothing. 
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A I 
The optimum estimator ^(t|s) of ̂ (t) which minimizes 

E{|:Kc| s) - (2-4) 

is given as 

Kt| s) = E[§_(t)ly_(T), 0 ̂  T ^ s] (2-5) 

where E{«|*} is a conditional expection of • given *. 

The Kalman-Bucy algorithm, with given initial conditions 

A , 

|_(OlO) and P(0), which estimates the state vector |_(t), given 

measurements y (? ), Os r t, is obtained as follows. 

l(t| t) = F(t)|_(tlt) + K(t)[][(t) - H(t)|_(t|t)] (2-6) 

K(t) = P(tlt)H(t)'R"^(t) (2-7) 

P(t|t) = F(t)P(t|t) + P(t|t)F(t)' - P(t|t)H(t)'R"l(t)H(t)P(t|t) 

-r G(t)Q(t)G(t) ' (2-8) 

where 

K(t) is a k_ X gain matrix for incorporating ^(t) into 

the estimate of |_(t), and 

P(tIt) is a k_ X k_ symmetric covariance matrix which is 

the covariance of the error in estimating ^(t) based on 

the knowledge of , 0 Î ;  T  t .  
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The matrix block diagram of the Kalman-Bucy filter is shown in 

Figure 2.1. 

B. Discrete Kalman Filter 

The statistical model of the signal process is assumed to be 

described by the discrete, linear vector difference equation, with a 

uniform sampling interval T, 

5̂ +1 = (2-9) 

where 

^ is a k_ vector of states with 

= 0, 

u is a k vector stochastic input to the signal 
—n u 

process with 

E{̂ } = 2 ) for every n, 

= X" if n = m, 

0 if n m. 

Here is a x k^ symmetric nonnegative-definite matrix, 

F^ is a k^ X k^ system matrix, and 

is a k^ X k^ input matrix. 

The statistical model of the measurement process is assumed to 

be described by the equation 

Zn = ^ (2-10) 
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gain computation 

K(t) 

y(t) 

F(t) [<C 

K(t) 

H(t) 

covariance computation 

P - FP+PF ' -PH'R"^HP +GQG 

gain computation 

K(t).P(t|t)H(t)'R"l(t) 

state estimator 

Figure 2.1. A block diagram of Kalman-Bucy filter 
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where 

4. ^ 
k I 
y 

V is a k I 
—n y 

E{v^) = 0, for every n. 

R if n = m, 
n ' 

0 if n m. 

Here is a x symmetric nonnegative-definite matrix, 

and 

H is a k X kg measurement matrix. 
n y S 

It is also assumed that the process noise u^ and the measurement 

noise v are uncorrelated. That is 
•"Tl 

Ef u y'l = 0 for every m and n. (2-11) 

Then an estimate of given observations ̂  from i = 0 up to m 

K  
is denoted by The notation with regard to prediction, filtering, 

and smoothing is same here as that used for the continuous filter. 

A 
Now the optimum estimator ^ of ̂  which minimizes 

- ̂ 11(2-12) 

is 

Clm " i = 0, 1, 2, ..., m}. (2-13) 
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A 

Then, with a priori information on initial conditions |_Q| ^ 

and P^j the optimal estimator ^ of the state vector ̂  

is given by the discrete Kalman filter algorithm which is recursively 

defined as follows : 

1) optimum gain 

<2-14) 

2) a posteriori estimate 

L|n = L\n-l + 

3) a posteriori error covariance 

.̂|n - - Wn|n-1 <2-16) 

4) a priori estimate 

Clin = ^n4|„ (2-17) 

5) a priori error covariance 

Vlln = + Wn (2-18) 

where 

is a X gain matrix for incorporating into 

the estimate of 

PI  is a k_ X k_ a posteriori covariance matrix that is 
njn S S 

the covariance of the error in estimating ̂  based on the 

knowledge of and 
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n̂+l|n  ̂̂  ̂ ̂  a priori covariance matrix which is 

the covariance of the error in estimating based on 

the knowledge of 

The matrix block diagram of the discrete Kalman filter is shown 

in Figure 2.2. 

As it can be seen from the recursive equations above, the gain 

matrix K^, the a posteriori covariance matrix P^|and the a priori 

covariance matrix be obtained for all possible n irrespective 

of any measurements. The models of the dynamic system, which are the 

signal process and the measurement process, have to be known completely. 

It can be seen that the discrete Kalman filter is a recursive estimator; 

hence it processes the measurements as they are generated in real time 

without any growing memory problem. Thus, it is easy to implement on 

a digital computer for on-line estimation. 

C. Stability of Kalman Filter 

The search for conditions under which optimality implies various 

forms of stability is the central problem of filtering. A uniform 

asymptotic stability of the optimum filter is an indispensable 

requirement. 

A theorem in Kalman (20) denotes that if the dynamic system 

(2-1) and (2-2) is uniformly completely observable and uniformly 

completely controllable, then the corresponding Kalman-Bucy filter is 

uniformly asymptotically stable. When this system is time fixed, then 

uniform conditions among the above can be omitted. 
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gain computation 

L 

unit T 
delay 

^n-11n-

unit T 
delay 

^n-11n-1 n n 

a prion 
covarlance 
computation 

a posteriori 
covariance 
computation 

n n-1 A 

gam 
computation 

I  

r-
K 
n 

o Kn 

+A 

n 

K n 

n-1 

unit T 
delay 

A 
F , 
•hal n 
o 

state estimator 

Figure 2.2. A block diagram of discrete Kalman filter 
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Sorenson (34) discusses the conditions in the discrete Kalman filter. 

In his work, a decomposition property is exhibited that permits the 

derivation of upper and lower bounds upon the covariance matrix. 

In this section, conditions for a uniform asymptotic stability 

only are shown. 

Completely observable matrices are defined first by 

t , 

O(to,t) = J ^(\,t)'H(X)'R" (X)H(X)rf(X,t)dX (2-19) 

^o 

for some t > t^ in a continuous system, and 

n , 

0 - E ^(m-l,i)%R %()(m-l,i) (2-20) 
-1 1 -X 

for some n > m in a discrete system, 

where ^(X,t) is a system transition matrix and 

^(i,m) is a discrete notation for ̂ (iT,mT). 

If these 0(t^,t) and 0^ ̂  are positive definite, then the corresponding 

filters are called completely observable. 

Completely controllable matrices are defined as 

t 

C(t^,t) = J d(t,X)G(X)Q(X)G(\)'4(t,\)'dX (2-21) 

^o 

for some t > t^ in a continuous system, and 

n 

C^ ̂  = E ^(i,m-l)G^Q^G^^(i,m-l) ' (2-22) 
* i=m 

for some n > m in a discrete system. 
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If these C(t ,t) and C are positive definite, then the corresponding 
o in,n 

filters are called completely controllable. 

A filter is said to be uniformly completely observable if there 

exist fixed positive constants a , b , and T SO that 
o o o 

0 < â I 5 0(t-T^,t) < b^I (2-23) 

for all t in a continuous system, or if there exist fixed positive 

constants a , b , and n so that 
o o o 

0 < a I g 0 ^ b I (2-24) 
o n-n ,n o 

o 

for all n in a discrete filter. 

And a filter is called uniformly completely controllable if there 

exist fixed positive constants a , b , and T SO that 
c c c 

0 < a^I RS C(t-T^,t) S b^I (2-25) 

for all t in a continuous filter, or if there exist fixed positive 

constants a , b , and n so that c c c 

0 < a I g C ^ b I (2-26) 
c n-n^,n c 

for all n in a discrete system. 

Now suppose the dynamical system, (2-1) and (2-2) in the continuous 

case or (2-9) and (2-10) in the discrete case, is uniformly completely 

observable and uniformly completely controllable. Then the optimal 

filter, (2-6) to (2-8) in the continuous case or (2-14) to (2-18) in 

the discrete case, is called uniformly asymptotically stable. 
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The uniform asymptotic stability of the optimal filter is an 

indispensable requirement in the filter design. If the optimal filter 

does not satisfy this condition, then a bounded input may result in 

an unbounded output and hence a small bias error can ruin the performance 

of the filter. 
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III. CLASSICAL DESIGN OF SAMPLED-DATA DIGITAL FILTER 

The synthesis of a sampled-data digital filter can be approached 

from two directions: time-domain design, and frequency-domain design. 

Time-domain design technique begins with unit impulse response require

ment and finds coefficients of the sampled-data filter transfer function 

such that its impulse response function approaches, in some sense, the 

given output function over a finite interval of time. The use of the 

frequency-domain approach in filter theory and design is well known 

to most filter designers. This method uses the z-transform calculus. 

Since much information is available on continuous filter design, a 

useful approach to digital filter design involves finding a set of 

difference equations having a system function with delay operators 

which resembles the known analog system function. 

A technique for doing this is the impulse invariant approach. By 

this, it is meant that the discrete response to an impulse function of 

the derived digital filter will be the samples of the continuous 

impulse response of the given analog filter. Another technique uses 

conformai mapping to transform a sampled-data digital filter design 

problem into a continuous filter design problem, for which a vast body 

of design literature exists. This technique is referred to as a 

bilinear transform although other transformations have sometimes been 

used. Finally, a technique referred to as a matched transform makes 

use of poles and zeros matched to those of the corresponding continuous 

filter. 
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When the same filtering requirements can be adequately met by 

various digital filters, the choice among them depends on the speed 

and size of execution of a computer program which performs difference 

equations® An important factor in this speed is the number of multiplica

tions. Some digital filters are able to meet essentially the same 

requirements as others with substantially fewer multiplications per 

output sample, and these are to be preferred. It is important to stress 

that speed of execution is the main limiting factor in the realization 

of digital filters. 

A. General Considerations 

The digital filter development is based upon the behavior of the 

linear analog filter. The linear analog filter is characterized by its 

impulse response, uu(T,t), which describes the output of the filter for 

all t ̂  0 in response to an impulse input applied at time T. The 

 ̂ o  ̂-C T -v» * • f ̂  \  ̂ »» r\ C*  ̂  ̂ -T •" «m « m  ̂ « v / \ 
VLA#- SJ A.  ̂̂ L. \ y g JL&4 k. O WUiW Aj.  ̂4. J W j J \ / 9 

is given by the convolution integral 

t 
x(t) = J uu(\ ,t)y(X )dÀ (3-1) 

o 

where zero initial conditions are assumed. 

Now suppose the interest is in the output of this filter only 

at regularly spaced time intervals, T seconds apart. Then the sampled 

output at the end of nth sampling interval is 



www.manaraa.com

23 

nT 
x(nT) - J U)(X,tiT)y(X)dX 

o 

= E j^°'^^^\(X,nT)y(X)dX. (3-2) 
m=0 mT 

As a notation, the inside term of the integral is representated as g(X). 

Then this g(\) and all its derivatives will be assumed to exist in an 

interval from mT to (m+l)T including X =mT, Therefore, g(X) can be 

expressed as a Taylor series, in the form 

g(X) = E - mT)"- . (3-3) 
i-0 

Then the equation (3-2) becomes 

x(nT) = S Z W(X ,nT)y(X)} - mT)^dX. 
m=0 i=0 ' ax X=mT mT 

(3-4) 

First, suppose that T is sufficiently small so that there is negligible 

error in representing equation (3-4) by the first term in its Taylor's 

series expansion as 

n-1 
x(nT) = T Z (D(mT,nT)y(mI). (3-5) 

m=0 

The approximation error is given by the sum of the higher-order terms from 

Taylor's series expansion as 

n-1 CO ipl+l 
Ax(nT) =2 Z "j(T,nT)y(T)} . (3-6) 

m=0 i=l 
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It can be noticed that as the sampling rate becomes extremely fast, the 

error expansion given by equation (3-6) approaches zero, and therefore 

the performance of the sampled processor approaches that of the continuous 

processor. Reflecting on the significance of equation (3-5), it can be 

seen that the output of the linear analog network at discrete-time 

instants can be approximated by a series of nonrecursive calculations on 

samples of the input signal as illustrated in Figure 3.1. The nature of 

the sampled-data digital filter is clear though complicated. The gain 

applied to the filter input y(t) is required to change in each feed

forward path with each succesive sample of the input signal. As n, that 

is time, increases, the required length of the sampled-data digital filter 

increases. As n approaches infinity, so does the filter size. Each word 

time delay is a one word memory whose capacity in bits is determined by 

the number of bits of accuracy used to represent y(nT). If y(nT) is 

scaled in amplitude and quantized so as to be represented by bits, then 

the each unit time delay block is an -t_-bits memory. If the length of 

the filter input y(nT) sequence is limited to m samples, that is y(T), 

y(2T), ..., y(mT), the length of the memory requirement is correspondingly 

reduced by t x m bits. 
w 

Alternately, if, after some time mT, the amplitude of the weighting 

function falls and remains below some level of interest a, that is 

|uj[(n-i)T,nT]l , (3-7) 
i > m 

the length of the filter may be truncated to a finite length, in this 

notation, after the storage of m samples. It is noticed that, for each 
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uuC (n-l)T,nT] 

Figure 3,1, Nonrecursive time-varying «ampled-data digital filter where ii)(iifr,nT), 

m = 0, 1, ,n-1, are time-varying gains 
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word time of delay required in this filter, one multiplication is also 

required. Again, in general, there are variable coefficient multipliers. 

For obvious reasons, this is often called both a taped delay-line filter, 

or for untruncated case, a growing memory filter, because the memory 

requirement increases linearly with the number of samples taken of the 

input signal. 

If the continuous filter is time invariant, then, referring to Brown 

and Nilsson (5), the weighting function with the age variable j becomes 

uu(T,t) = uu(t-T). In which case the convolution integral and the 

convolution summation becomes 

t 
X(t) = J Uu(t-\)y(X)dÀ 

o 

t 
= ]" uu(\)y(t-x)d\ (3-8) 

o 

and 

n-1 
x(ar) - T Z uu(nT-mT)y(mT) 

m=0 

n-1 
= T Z uu(mT)y(nT-mT), (3-9) 

m=0 

respectively. A fixed-parameter digital structure for a truncated impulse 

response is illustrated in Figure 3.2. 

Three alternate procedures will be discussed for developing filter 

input-output relations for various z-transforms as frequency-domain 

methods. Sampled-data digital filter transfer function will be implemented 

by digital techniques, starting with fixed-parameter continuous filter 

impulse response function in the following. 
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y(nT) 
A/D 

Figure 3.2. Nonrecursive time-fixed sampled-data digital filter structure where uj(mT), 

m = 0, 1, 2, ..., n, are fixed gains 
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B. Impulse Invariant z-transform 

Consider an impulse response function of a continuous filter in time-

invariant form as (ju(t)- The transfer function of this continuous filter 

is given by 

w(s) (3-10) 

Now 'JU(T) is to be sampled at regular intervals, T seconds- This sampled 

waveform can be thought of as a series of impulse functions, each of 

magnitude uuCnT) at time x = nT. The sampled waveform can be represented by 

CO 

uU*(x) ~ Z uu(nT) 6 (i—nT) (3-11) 
n=0 

which represents impulse modulation of UU(T)» In the frequency domain, 

this sampled impulse response is simply the Laplace transform of 

equation (3-11) 

™ -nTs 
W*(s) = E uu(nT)e (3-12) 

n=0 

where * represents the sampled-data form of W(s). 

The first form of the z-transform can be defined from using the unit 

delay operation 

z"^ = e"^^ (3-13) 

as 

W(z) = Z w(nT)z"" . (3-14) 
n=0 

The notation on the left-hand side of the equation (3-14) is not strictly 

correct, but it conforms to general usage. 
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The second form of the z-transform can be defined by performing 

convolution integral of W(s) with the impulse response train. Assume 

for simplicity in this form that W(s) is a proper rational function with 

all poles in the left-half s-plane. Since the impulse response train is 

n=0 1 - e 

the second representation for W*(s) is obtained as follows. 

W*(s) = -TT^-r f —dA. (3-16) 
-"c 1 - e-" 

where the contour C of the integration extends from the bottom to the top 

of the complex plane to the left of the singularities of the impulse 

train and to the right of the singularities of W(X). Then the contour 

of integration can be closed to the right yielding 

w*(s) = Y z W(s + . (3-17) 
n=-co 

See Lindorff (24) for this derivation using a Fourier transform. From 

the above it is apparent that W*(s) is periodic in 

uu = 2 TT f = , (3-18) 
o o i 

which is called the sampling frequency. The consequence is that the 

frequency responses of sampled and continuous filters are the same only 

if W(s) is band limited, that is 

(JU 
W(juL) = 0 Cor |uu| > -f - (3-19) 
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The third important representation of W*(s) is obtained by choosing 

different contour of integration. When the contour in equation (3-16) 

is closed to left and contains all poles of W(s) in the left-half s-plane, 

then the equation (3-16) becomes 

W*(s) = Z [residues • (3-20) 
1 - e poles of W(A) 

As W(s) is assumed to be a proper rational function, the given transfer 

function W(s) is written in partial fraction form, with only first-order 

poles and complex-conjugate second-order poles, such as 

™1 b. ™2 (s+c )e. +d.f. 
W(s) = Z 71^+ Z -f 2^ • (3-21) 

i=l i i=l (s+c^) + d^ 

Then each term in the above equation (3-21) is represented according to 

the equation (3-20) with the gain compensation factor T as follows. 

b. b.T 
^ ^ ^ (3-22) 

' +^i 1 _ 

(s+c^)e^ + d^f^ e^T - Te ^^^(e^cosd^T - f^sind^T)z ^ 

(s+c^)^ + dj 1 - 2e"^i^(cosd^T)z"l + 

(3-23) 

-1 -sT where T is a sampling interval and z = e is a unit delay operator. 

If following notations are used. 
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-Ci T = 2e cosd^T , 

, 

E. = e.T, and 
1 1 

F. = Te ^^^(e.cosd.T- f.sind.T) , (3-24) 
1 ^ 1 1 1 L 

then the complete sampled-data digital filter transfer function of 

equation (3-21)becomes 

"*1 B. "^2 E. - F.z"^ 
W(z) = Z + Z ^ ^ 12 • (3-25) 

i=l 1 - A.z i=l 1 - C.z + D.z 
1 11 

This function is realized in a block diagram form in Figure 3.3. 

In general, this representation gives excellent results when applied 

to all-pole low-pass and band-pass filters. Some applications show that 

the impulse invariant transform should be used only suitable band-limited 

function. Fortunately the design of band-stop and high-pass sampled-data 

digital filters can be accomplished without resorting to a band-limiting 

low-pass filters by using either the bilinear z-transform or the matched 

z-transform. 

C. Bilinear z-transform 

The design specification of many filter transfer functions requires 

the realization of a given response characteristic in the frequency domain, 

but docs not demand any particular impulse or step response characteristic. 

Specification of frequency response only permits the bilinear z-transform 

to be used to realize sampled-data digital filters that have relatively 
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Figure 3.3. Realization of sampled-data digital filter transfer 

function in parallel form 
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constant magnitude pass-band and stop-band characteristic. This trans

formation, being an algebraic one, may be applied to either partial 

fraction expansion representation or the rational fraction form. This 

transformation is 

s —> ftanh^ - I ' - = I . (3-26) 
^ ^ 1 + e ̂  ^ 1 + z 

The bilinear z-transform yields the following relations for real and 

complex functions. 

a. real pole in partial fraction expansion 

bi 

^ + S 1 - A.z-1 
1 

a.T 

1 - *2" 
where k. ^ 

and 

B.. 

(3-27) 

i a.T • 
2(1 + -y-) 

b. complex pole in partial fraction expansion 

(s+c.)e. -r d.f. (i + z ^)(E. - F.z ^) 
— > it (3-28) 

(s+c^) + d^2 1 - C^z + D^z 

2 ^ 2 2 
where - - {l - (-p-) - (-^) } 

1 2 2 
°i " ^ " T") (—) } 
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T <=1^ 

^ - 1" 

c T d T 
and A = (1 + —j") + (~^) • 

Since the term (1 + z ) is common, it may be factored out or the fractions 

may be reduced to proper forms plus a constant term, as 

3. (1 + z"^) B. ®i^^ A~^ 
— = - f + 1- (3-29) 

1 - A.z "i I - A.z ^ 
1 1 

F. C. , 

(1 + 2-S(E. - F.z-1) F. <®i +3^' + - Fjd + 3^)]^ 
i i = _ — + i i . 

-1 -2 D -1 -2 
1 - C.z "- + D.z 1 1 - C.z + D.z 
IX 11 

(3-30) 

After combining all of these terms, the sampled-data digital filter 

transfer function may now be put in the form given by equation (3-25) 

which is added by a constant term. 

c. real factor in rational form 

G (1 - A.z'S 
s + a. > — (3-31) 

^ 1 + z" 

a.T 
1 - -4-

where A. = 
i a.T 

2 and = ̂ (1 + —) . 
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d. complex factor in rational form 

2 2 + V"^> 
(s+c.)^+d^ > — 1 _ , (3-32) 

^ ^ (1 + z ) 

2 2 ^ 2 
where = - {1 - (-y-) - (-^) } 

c T , d T _ 

°i " " ~2~^ ] 

2 2 ^ 2 2 
H. = (|)^{(i + + i -^r]  

c T d T . 
and A = (1 + + (~2~) • 

Therefore, the resulting sampled-data digital filter transfer function 

takes the following form, if the continuous filter transfer function is 

given as 

^^4 2 2 
TT (s+b.) TT {(s+e + f^} 

« ( » )  .  ^ ^  :  ,  ( 3 - 3 3 )  

"l °3 2 2 
n (s+VTT{(s+c^) 
K=x m=j. 

then m^ m^ 

IT (1 - B,z~^) 17 (1 - E z"l + F z"^) 

«(z) = G,^=i———: 1—(1 + z-:r5 _ 
d m^ m^ ' 

n (1 - A, z'^) TT (1 - C z"^ + D z"^) 
k=l m=l ™ ™ (3-34) 

where m^ = (m^ - m^) + 2(m^ - m^) and is gain change in the transforma

tion. Realization of the individual first-order and second-order terms 

is similar to the recursive structure and is illustrated in Figure 3.4. 

A block diagram showing the factored rational sampled-data digital filter 

transfer function is shown in Figure 3.5. 
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+ 
0-

z -1 

B. 
1 

z 
-1 

c p / 
1 1 

z 
-1 

"+ 

F. 1 

a) Wai(z) = 
1 - B. z 

1 

1 - A. z 
1 

-1 
b) W^^(z) = 

1 - E.z"^ + F.z"^ 
1 1 

-1 -2 
1 - C.z + D.z 

1 1 

Figure 3.4. Realization of first-order and 

second-order terms 
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first-order terms second-order terms 

Figure 3.5. Realization of sampled-data digital filter transfer function in cascade form 
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Because the frequency axis is distorted by Che bilinear z-transform, 

care must be taken when designing filters with critical frequencies near 

the half-sampling frequency. The critical frequencies will map according 

to the relationship 

f = ^-tanirf ,T (3-35) 
c TT T a 

where is a critical frequency in the continuous design and f^ is a 

critical frequency in the discrete design. This relationship is plotted 

in Figure 3.6. Fortunately, most continuous filters to be approximated 

are often initially designed with the aid of a frequency band transforma

tion. It is, therefore, a simple matter to change the critical frequencies 

in the band transformation to yield a ^-ewarped continuous design. This 

new design will yield a sampled-data digital filter with the desired 

critical frequencies when the bilinear z-transform is used. 

A disadvantage of the bilinear z-transform is the frequency scale 

distortion it introduces into the digital filter magnitude response 

characteristic. For narrow band-width filters and even with prewarping 

or predistortion, the bilinear z-transform may not yield a sampled-data 

digital filter with the desired magnitude response characteristic. This 

leaves the matched z-transform as the third alternative for realizing a 

sampled-data digital filter from a continuous design. 

D. Matched z-transform 

The matched z-transform is another useful transform for designing 

sampled-data digital filters from continuous filters. This transformation 
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Figure 3.6. Nonlinear frequency scale imposed by 

bilinear z-transform 
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generates a digital filter transfer function with poles and zeros matched 

to those of continuous filter transfer function. The mapping transforms 

for the poles and zeros of the continuous filter transfer function 

given by 

s > e®^ = z. (3-36) 

Real poles and zeros are transformed according to 

1 -
s + a. > ^ . (3-37) 

While complex poles and zeros in the second-order filter yield terms of 

the form 

2 2 ^ - 2e"^i^(cosPT)z"^ + 
(s + a.)^ + > 2 • (3-38) 

T 

The transfer function for the sampled-data digital filter in general form 

of the matched z-transform which is z-trans form of equation (3-33) becomes 

TT (1 - B.Z ~) TT (1 - E z ~ + F z *•) 
9 —.1 "I  ̂ n. 

W(z) = — — (3-39) 
""l , °3 19 
TT (1 - A, z ^) TT (1 - C z'-^ + D z"^) 
k=l m=l ™ 

where = e 
> 

- e-'t? . 

C = 2e"^^cosd T , 
m m 

D - , m 

E = 2e"^n^cosf T , 
n n ' 
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n 

and is chosen to adjust the insertion level gain factor with 

= (m^ - m^) + 2(m^ - m^). 

Note that the poles of the filter transfer function are the same as 

those derived by the impulse invariant z-transform. However the zeros 

of the matched z-transform derived filter transfer function will not 

usually correspond to those of the impulse invariant z-transform. The 

result of this fact is that the matched z-transform may be used to obtain 

useful designs for high-pass and band-stop filters. There are, however, 

some designs for which the matched z-transform derived filter does not give 

satisfactory results without employing some modification. These designs 

are all-pole low-pass and band-pass functions. A simple modification 

consisting of the insertion of zeros at the half-sampling frequency will 

correct an unsatisfactory design. The modification requires multiplication 

of the matched z-transform derived filter by the terms of the form 

(1 + z ^)™, with m which is equal to the half-sampling frequency zeros 

desired. 

In the preceding discussions, basic criteria are implied for 

determing that a sampled-data digital filter design is an accurate 

representation of a continuous design. These criteria simply require that 

the frequency and time response characteristics of the filter design yield 

the desired results. 

Various methods have been demonstrated for transforming a given analog 

filter into a sampled-data digital filter form. As it has been seen, not 
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all of these techniques produce good results as desired criteria. The 

digital filter, as a final goal of the sampled-data digital filter, whose 

characteristics are determined by the structural form and accuracy 

specifications of the coefficients in terms of the sampled-data digital 

filter transfer function, does not yield the good samples at the discrete 

time of the continuous filter. Hence a study must be conducted to achieve 

a better sampled-data digital filter. 
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IV. EQUIVALENT KALMAN-BUCY FILTER 

The basic idea behind the new approach to the sampled-data digital 

filter design is that a Kalman-Bucy filter can be discretized with much 

accuracy so that the discretized Kalman-Bucy filter has the form of the 

discrete Kalman filter algorithm. When the sampling interval is small, 

this discretization is simplified to be a routine matter. 

The problem in this chapter is to develop an equivalent Kalman-Bucy 

filter from a given continuous filter. One difficulty of intuitive ideas 

is that a Kalman-Bucy filter is based on state estimation, but a classical 

filter is based on frequency selectivity. It can be assumed that the 

best estimate of states in the mean-square sense gives the best frequency 

distribution since the states correspond to the signal which is selected 

in frequency. In other words, once the states of the filter are estimated 

as functions of time, the filter output in frequency distribution can be 

calculated. 

The new method begins with a continuous filter transfer function 

W(Sjt) in general form which is given as a ratio of two polynomials as 

the following equation (4-1): 

(4-1) 

Here N(s,t) = p^_^(t)s^"^ + pj^_2(t)s^~^ + ... + 3^(t)s + p^(t) 

and D(s,t) = s^ + ^(t)s^ ^ + Q:^_2(t)s^~^ + + a^(t)s + a^(t), 
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where W(s,t) is a Laplace transform of a continuous classical filter 

impulse response uuCtat) with respect to the age variable j» Either this 

transfer function W(s,t) or the impulse response function uu(T,t) is 

assumed to be given at the beginning of the filter design. 

A single input and a single output of this filter are represented as 

y(t) and x(t), respectively, which are scalar functions of time. This 

output of the continuous filter is supposed to be very close to the 

original signal process, if this can be imagined, according to the 

classical design. 

It should be noticed that the state representation for the given 

classical filter needs to be carefully selected for having appropriate 

Kalman-Bucy equivalent filter correspondence. A block diagram correspond

ing to W(s,t) that will be used for the new method is shown in Figure 4.1. 

As shown in the figure, the states are defined uniquely such that a 

A 

differentiated state is a next state except the last state §^(t|t). 

Note that the number of states to be defined is the order of the denominator 

of the given transfer function in equation (4-1). In this state-variable 

representation, the output x(t) is a linear combination of the states as 

indicated by the coefficients of the numerator of the continuous filter 

transfer function. 

In a matrix representation of these state variables, it can be seen 

that the denominator of the transfer function determines the system 

matrix, and the numerator reflects eventually the output equation, 

depending on what random variables are actually observed in the situation 

at hand. In matrix equation form, the state and the output equations are 
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Figure 4.1. A general block diagram of a classical filter and its state representation 
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= A(t)£(tlt) +^(t). (4-2) 

and 

where 

x(t) = M(t)|_(t|t), (4-3) 

is a k X 1 column vector representing each state, i.e.. 

£(tlt) = [§i(c|c)§2(c|c) (4-4) 

A(t) is a k x k system matrix determined by the denominator of 

the filter transfer function such that 

A(t) = 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

-«^(c) 

0 1 

(4-5) 

^ is a k X 1 constant column vector which has an only unit 

element of kth element, i.e., 

B = r 0 0 0 0  1 ] '  (4-6) 

and M(t) is a 1 x k row vector such that it consists of the 

coefficients of the numerator of the filter transfer function as 

M(t) = [p^(t)p^(t)p2(c) (4-7) 
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It will be noted here that £,(t|t) is defined using only the denominator of 

the continuous filter transfer function. The output x(t) is a weighted 

A 1 

sum of each element of ̂ (t|t). 

New continuous filter equations which are equivalent to the equations 

(4-2) and (4-3), and which have the Kalman-Bucy filter structure and the 

output equation, are assumed and are as follows: 

£(t|t) = F(t)l(tlt) +K(t)Cy(t) - H(t)£(t|t)] (4-8) 

x(t) = M(t)^(t|t). (4-9) 

Here 

K(t) = P(tlt)H(t)'r'^(t) (4-10) 

and 

P(t|t) = F(t)P(t|t) + P(t|t)F(t)' 

- P(t|t)H(t)'r'^(t)H(t)P(t|t) + Q(t) (4-11) 

where F(t), H(t), P(0|0), P(t|t), Q(t) and r(t) are to be chosen according 

to equations (4-2) and (4-3); that is, the given continuous filter transfer 

function (4-1). 

An. initial attempt at the equivalent Kalman-Bucy filter will be made 

on the transient basis to that of the continuous classical filter. Since 

the equation (4-8) is designed to have the same transient behavior as 

the equation (4-2), the equivalent Kalman-Bucy filter initial gain should 

be fixed as 

K(0) = B . (4-12) 
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It has been proved in Kalman (20) that every solution of the 

covariance equation (2-8) which has a nonnegative-definite initial value 

converges uniformly to its equilibrium state when the stochastic process 

models (2-1) and (2-2) are uniformly completely observable and uniformly 

completely controllable. Hence the stochastic process models used for 

this now filter have to be uniformly completely observable and uniformly 

completely controllable. Then the fixed initial value P(0|0) in equation 

(4-11) means a fixed covariance solution P(t|t), and, therfore, a fixed 

initial value of the covariance equation means a fixed initial gain K(0). 

Hence an initial covariance value P(0|0) has to be fixed such that 

B = P(0|0)H(0)'r'^(O), (4-13) 

and this P(0|0), satisfying the above equation, is an initial value of 

the covariance equation (4-11). 

The second step in the design of the equivalent Kalman-Bucy filter is 

to assure steady-state equivalency to the given continuous classical 

filter. That is, in the steady state, the equivalent Kalman-Bucy filter 

has to perform the same roles as those of continuous filter. This second 

condition requires 

F(t) - K(t)H(t) = A(t), 

and 

K(t) = B, (4-14) 

here 

K(t) = P(t|t)H(t) 'r"\t), 
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where P(tjt) is an equilibrium state of the covariance equation (4-11), 

This P(t|t) is defined, for a given initial state P(0|0) at time t^, as 

P(t|t) = lim P(t|t: P(0|0), t^), (4-15) 
t -*^co 
O 

if this limit exists for all t. 

This P(t|t) has to be solved in terms of A(t), Q(t), and r(t), first, 

and then F(t) and H(t) can be obtained algebraically using equations (4-14). 

The ways of solving this equilibrium covariance matrix are different 

depending on whether A(t) is time-fixed or time-varying matrix. This 

implies D(s,t) in equation (4-1) is time fixed or time varying. As can 

be seen from equations (4-14), if A(t) is time fixed, F(t) and H(t) can 

be chosen as time-invariant matrices. In the case of F(t) and H(t) being 

time invariant, the stochastic process model described by (2-1) and (2-2) 

is called a fixed-parameter system. The covariance equation (4-11) 

becomes k(k + l)/2 algebraic equations in the steady-state fixed-parameter 

system, and P(tjt) is solved for easily. In the case that F(t) and H(t) 

are not time fixed by a time-varying A(t) matrix, the stochastic process 

model, (2-1) and (2-2), is known as the time-varying parameter system. 

In this system, the covariance equation (4-11) becomes k(k + l)/2 first-

order differential equations even in the steady state, and the equilibrium 

solution of the covariance equation is complex, but can be solved. These 

problems will be discussed in subsequent sections. 

Notice should be taken that an attempt has been made to choose the 

gain K(t) of the equivalent Kalman-Bucy filter to be identical to the 

vector ̂  in both transient and steady states as in equations (4-12) 



www.manaraa.com

50 

and (4-14), and, therfore, the parameters as Q(t) and r(t) do not affect 

this gain directly. 

Also it should be noted that the output row vector M(t) obtained 

from N(s,t) of the equation (4-1) is only connected to the output equation 

(4-9) of the equivalent Kalman-Bucy filter. Hence the numerator N(s,t) 

of the given classical filter transfer function can be freely time fixed 

or time varying without causing any problems in the new filter design. 

A. Fixed-parameter System 

In a fixed-parameter system, which is a fixed-coefficient denominator 

D(s,t) of a classical filter transfer function (4-1), the corresponding 

equivalent Kalman-Bucy filter coefficients will become time fixed as can 

be seen from equations (4-8) through (4-11) and (4-14). The fixed-

parameter equivalent Kalman-Bucy filter will be considered in this section 

as a fixed-parameter denominator of the given classical filter. 

Kalman (20) has discussed very precisely the fixed-parameter case, 

and it is not a problem to have an equilibrium state of the covariance 

equation once the stochastic process models are given. If the fixed-

parameter stochastic process models that generate a filter input process 

are completely observable and completely controllable, then it has been 

proved that every solution of the covariance equation (4-11) which has 

a nonnegative initial value P(0|0) tends uniformly to a constant matrix 

in the limit as t goes to infinity. Moreover, this matrix is a unique 

positive-definite equilibrium state of the covariance equation. 

Hence, if it is assumed that the stochastic process models which can 

be imagined from the equivalent Kalman-Bucy filter are completely observable 
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and completely controllable, then P(t|t) is zero in its steady state, and 

the covariance equation (4-11) becomes 

FP + PF ' - m'r~^HP + Q = 0 (4-16) 

where Q and r are undetermined constants at this point, and P(t|t) is 

written as P since it is constant in the steady state. 

Now the problem considered here is how to choose P in terms of the 

given A, some constant scalar r, and a constant k X k matrix Q. From 

equations (4-14) 

and 

F = A + BrB'P"^, 

H = rB'P"^ 

(4-17) 

(4-18) 

Since ̂  has one unit element from equation (4-6), the above equations can 

be written as 

0 0 0 

F = A + 

0 

0 

0 0 

0 r 

p-1 

kxk 

(4-19) 

and 

H - [0 0 0 r] p"! 
IXk 

(4-20) 
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Substituting these two equations into the equation (4-16), then the 

steady-state covariance equation becomes 

0 . . 0 0  

AP + PA' + • • + Q = 0 . (4-21) 

0  . . . .  0 0  

0  . . . .  O r  
kXk 

Observing equations (4-19), (4-20) and (4-21), it can be seen that once 

Q and r are chosen, then P will be obtained from equation (4-21), its 

inverse P ^ can be computed, and then F and H are obtained from equations 

(4-19) and (4-20), respectively. 

B. Time-varying Parameter System 

When the denominator of the classical continuous filter is given with 

time-varying coefficients, the state equation (4-2) has a time-varying 

system matrix A(t). Since the system matrix determines the dynamics of 

the filter, the equivalent Kalman-Bucy filter depends on this. The time-

variable system matrix makes a time-varying fixed-gain Kalman-Bucy filter 

necessary. The output matrix M(t) reflected by the numerator of the 

continuous filter transfer function (4-1) remains the same in the output 

equation of the equivalent Kalman-Bucy filter, and, hence, this output 

matrix does not affect time-variable dynamics of the equivalent Kalman-

Bucy filter. 

If the time-varying parameters of the filter equation are given, the 

representation procedure is more complex. The stochastic process models 
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that generate the filter input process need to be uniformly completely 

observable and uniformly completely controllable so that the equilibrium 

solution of the covariance equation (4-11) is unique and exists. 

If this is assumed, the steady-state covariance equation becomes 

P(t|t) = F(t)P(t|t) + P(t|t)F(t)' 

- P(t|t)H(t)'r'^(t)H(t)P(t|t) + Q(t) (4-22) 

where Q(t) and r(t) are undetermined but will be chosen such that this 

covariance equation becomes simple. F(t) and H(t) are related to P(tjt) 

as follows: 

and 

F(t) = A(t) + Br(t)B'P"^(t|t) 

H(t) = r(t)B'P"^(t|t) 

(4-23) 

(4-24) 

from equations (4-14). Substituting above equations into the equation 

(4-22), the steady-state covariance equation becomes 

0  . . .  0  0  

P(tjt) - A(t)P(tjt) - P(tjt)A(t)' -

0  . . .  0  0  

0  . . .  0  r ( t )  

- Q(t) = 0 (4-25) 

TcXk 

If this equation is compared to the matrix Riccati equation (2-8), it 

will be seen that the quadratic term in the matrix Riccati equation has 

disappeared. Hence the covariance equation (4-25) is not a Riccati-type 
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nonlinear matrix equation any more, but this equation represents simply 

k(k + l)/2 first-order differential equations. It is possible, therefore, 

to solve this covariance equation (4-25), and it assumed to have been 

solved in terms of A(t), Q(t) and r(t). Then parameters F(t) and H(t) 

are found by using this result, and equations (4-23) and (4-24) become 

F(t) = A(t) + 

0 0 0 

• • • 

* o • 

0 0 0 

0 0 r(t) 

P"^(tlt) (4-26) 

kXk 

and 

H(t) = [0 0 .... 0 r(t)] P"l(t|t). 
Ixk 

(4-27) 

In summary, the parameters F(t) and H(t) of the new filter are 

obtained by equations (4-26) and (4-27), respectively, where the inverse 

matrix of the steady-state covariance matrix is found from equation (4-25) 

C. Development of Stochastic Process Models 

Once the parameters F(t), H(t) and M(t) of the equivalent Kalman-Bucy 

filter are obtained from the given classical filter transfer function, it 

is possible to imagine that an equivalent Kalman-Bucy filter input y*(t) 

is generated by stochastic process models. This input y*(t) may not 

coincide to the supposed original filter input y(t), but this y*(t) will 

give ideas about how the equivalent Kalman-Bucy filter has been designed 

and optimized. 
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Stochastic process models of the signal process and measurement 

process are 

and 

l(t) = F(t)i(t) + u(t) 

y*(t) = H(t)§.(t) + v(t) , 

(4-28) 

(4-29) 

respectively, where 

E{u(t)u(T)'} = Q(t)6(t-T) for every t and j, 

E{v(t)v(T)} = r(t)6(t-T) for every t and 

E{u(t)} = 2 for all t, 

E{v(t)} = 0 for all t, 

= 0, 

E{§_(0)u(t)'} = 0 for all t. 

E{|_(0)v(t)} = 0 

E{u(t)v(T)} - 0 

for all t. 

for all t and 

y*(t) and v(t) are scalar functions. 

The equivalent Kalman-Bucy filter is an optimal filter whose signal 

process and measurement process are given by above equations, and is an 

equivalent filter to the given continuous filter transfer function (4-1) 

which is represented by equations (4-2) and (4-3). This equivalent 

Kalman-Bucy filter has a fixed-gain scalar-measurement Kalman-Bucy filter 

and an associated output equation. With an initial £(0|0), the filter 

equations are 
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l(t|t) = F(t)£(t|t) + K(t)[y*(t) - H(t)£(tlt)] (4-30) 

and 

x(t) = , (4-31) 

here 

K(t) = P(t|t)H(t)'r ^(t), (4-32) 

P(t|t) = F(t)P(t|t) +P(t|t)F(t)' 

- P(t|t)H(t)'r'\t)H(t)P(tlt) + Q(t) (4-33) 

and P(0|0) satisfies 

B = P(0l0)H(0)'r"^(t), (4-34) 

where parameters F(t), H(t), M(t) and P(t|t) are given by equations 

(4-7), (4-19), (4-20), (4-21), (4-25), (4-26) and (4-27). A block 

diagram of these stochastic process models and the equivalent Kalman-

Bucy filter are shown in Figure 4.2. 

Here the imagined stochastic process models (4-28) and (4-29) have 

to be uniformly completely observable and uniformly completely controllable 

in the time-varying parameter system, and completely observable and 

completely controllable in the time-fixed parameter system. In other 

words, it has to be kept in mind that P(t|t) in terms of A(t), Q(t) 

and r(t), and hence F(t) and H(t) must be chosen properly for these 

conditions. 

The equivalence of the new filter to the given filter will now be 

shown. Since the optimum gain K(t) is designed to be the same as in 
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y*(c) x(t) 

imagined stochastic process models 

fixed-gain scalar-measurement 
Kalman-Bucy filter 

output 
equation 

equivalent Kalman-Bucy filter 

H(t) K(t) M(t) 

gain 
calculation 

Figure 4.2. Imagined stochastic process models and the equivalent Kalman-Bucy filter 
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equation (4-6), the new filter equations are 

i(t|t) = {A(t) + 

0 0 

0 

0 

0 0 

0 r(t) 

P l(t|t)}l(t|t) 

kXk 

+ B[y(t) - [0 ... 0 r(t)]^^^P"^(tlt) ̂(tjt)} 

=  A( t )L ( t l t )  +  By( t ) .  (4-35) 

This is equivalent to equation (4-2), and the output equation (4-31) in 

the new filter is equivalent to equation (4-3). Therefore it can be said 

that the equivalent Kalman-Bucy filter is identical to the given continuous 

filter. 

Moreover, the equation (4-35) shows that, whatever nonnegative-

definite Q(t) and positive r(t) are chosen, this equivalence remains the 

same. It is because the gain K(t) is equal to the ̂  vector, and, there

fore, Q(t) and r(t) do not affect the gain directly, but they only 

affect the covariance matrix P(t|t), and the equation (4-32) forces K(t) 

to be the same as B^. Hence the best way of choosing Q(t) and r(t) is 

such that the covariance equation (4-33) becomes as simple as possible. 

So Q(t) and r(t) are chosen in this dissertation as 
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Q(t) = 

0 0 

0 

0 

. . 0 0  

. . 0 1  

(4-36) 

kXk 

and 

r(t) = 1, (4-37) 

respectively. 

When these assumptions are made, the covariance equation (4-21) in 

the time-fixed system becomes 

AP + PA' + 

0 0 0 

0 

0 

0 0 

0 2 

=  0 .  

cXk 

(4-38) 

and the equation (4-25) in the time-varying parameter system becomes 

P(c|t) - A(t)P(t|t) - P(t|t)A(t) ' 

0 0 

0 

0 

. 0 0 

. 0 2 

= 0 . 

kXk 

(4-39) 
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In this way, the measurement noise process v(t) has unity white noise 

and the system input process noise u(t) has unity white noise at the kth 

element only. 

These simple noise processes are added to the given classical filter, 

but these processes do not generate the same filter input y(t) which is 

assumed to be at the classical filter input. Hence, what is available 

as an input is an imagined input y*(t), and this is not equal to y(t) in 

most cases. By chance, if y*(t) is the same as y(t), the derived fixed-

gain Kalman-Bucy filter becomes an optimum filter for this input y(t), 

and the equivalent Kalman-Bucy filter is the best filter in the sense of 

least mean-square error. Therefore, more information is needed about the 

noises for the new filter to be an optimal filter. 

Many papers about identification techniques of the Kalman filter 

describe the selection of unknown noise information, and it means a good 

possibility exists for obtaining correct noise information. But this 

problem will not be dealt with in this dissertation. 

With simple Q(t) and r(t), the equivalent Kalman-Bucy filter becomes 

a suboptimal filter for most inputs. Since this filter is equivalent to 

the given classical filter identically, the suboptimality depends on the 

given classical filter. 



www.manaraa.com

61 

V. DISCRETE KALMAN-BUCY DERIVED FILTER 

In the previous chapter, the derivation for obtaining the continuous 

equivalent Kalman-Bucy filter from a continuous classical filter transfer 

function was developed. It has been noted also that the equivalent Kalman-

Bucy filter is a suboptimal filter for the given measurement. The sub-

optimal filter can also be thought of as an optimal filter having noise 

information about Q(t) and r(t) correctly known. 

In this chapter, the equivalent Kalman-Bucy filter is going to be 

discretized. The fixed-gain Kalman-Bucy filter is discretized to be a 

fixed-gain discrete Kalman filter. The method used here is to discretize 

the stochastic process models first, so that the corresponding discrete 

models are obtained. Since the discrete stochastic process models are 

approximated from the continuous models, the corresponding discrete Kalman 

filter which is an optimal filter for these discrete models is identical 

to a discretized Kalman-Bucy filter. This approach can be said to be the 

same as discretizing the Kalman-Bucy filter directly. The output equation 

is discretized by simply sampling at discrete time. 

After the equivalent Kalman-Bucy filter is discretized, the dis

cretization procedure is simplified. For a small sampling interval, this 

discretization becomes a routine procedure such that an approximated 

discrete equivalent Kalman-Bucy filter is obtained which will be the new 

sampled-data digital filter as desired. This systematic design approach, 

called the discrete Kalman-Bucy derived filter, will be summarized at the 

end. 
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A. Discretization of Signal Process 

Continuous stochastic process models of—equations (4-28) and (4-29) 

are to be represented by discrete models as 

Sn+l - + Hn' (5-1) 

and 

= S.:. + (5-2) 

where n is a discrete time at t = nT, and F , H , Ç , u , v and y* are 
n —n ^ —n n n 

defined such that the solution of this discrete process is identical with 

the solution of the continuous process at time t in a statistical sense. 

Also the output of the discrete filter will be represented as 

(5-3) 

so that the discrete output x^ has approximately the same value as that 

of the continuous filter output x(t) at time t = nT. 

The signal process will be discretized in this section and the 

measurement process in the next section. The output equation is going 

to be discretized in the following section. 

The solution of the linear differential equation (4-28) is, for 

t ^ 0, 

t 
£(t) = 4(t,0)^(0) + J «5(t,À)u(\)dX, (5-4) 

o 

where «5(t,x) is the state transition matrix of the system described by 

the equation (4-28). 
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Suppose the solution is obtained at time t = nT; then equation (5-4) 

can be written as 

I(nT) = 4(nT,0)&(0) + J^^«i(nT,X)u(\)dX, (5-5) 
o 

and at time t = (n+l)T 

^(n+l)T] = 4[(n+l)T,0]&(0) + V (n+l)T,\]u(\)dX 
o 

(n+l)T 
= d[(n+l)T,nT]{d(nT,0)^(0) + J «5(nT)u(X )dX} 

o 

nT 
= d[(n+l)T,nT]{d(nT,0)§XO) +J «4(nT,\)u(X)dx} 

o 

(n+l)T 
+ d[(n+l)T,nT] J ^(nT,\)u(X)dX 

nT 

(n+l)T 
= «5[(n+l)T,nT]|_(nT) + (n+l)T,nT] J <5(nT A)u(X)dX. 

nT 

(5-6) 

Having n as nT and (n+1) as (n+l)T, then the signal process model 

is digitalized from equation (4-28) as 

5̂ +1 = Fji. + a. . (5-7) 

where 

= <5[(n+l)T,nT] (5-8) 

and 

(n+l)T 
u^ = d[(n+l)T,nT] J ç5(nT,X)u(\)dX . (5-9) 

nT 



www.manaraa.com

64 

Hence the noise covariance Q = Efu u '} becomes 
n —n—n 

(n+l)T 
= (i5[Cn+l)T,nT]{J d(nT,X)Q(X)d(nT,k)'dX}d[(n+l)T,nT]'. 

nT 
(5-10) 

Therefore the discrete signal process model is derived to have 

parameters and as given by equations (5-8) and (5-10), respectively. 

3. Discretization of Measurement Process 

Now the measurement process of stochastic process models is going 

to be discretized. Here it will be assumed the discrete measurement 

process y* in equation (5-2) is an average of the continuous process 

y*(t) over the small interval of time T, then the discrete measurement 

y* is given, at time t = nT, as 

, (n+l)T 
y* = Y I + v(x)]dx 

nT 

1 ,(n+l)T 
= HjLn + T j v(X)dX , (5-11) 

n.T 

where the discrete measurement vector H is defined as 
—n 

. (n+l)T 
H - - r H(X)dX . (5-12) 

Again, for the small interval T, this discrete measurement vector H has 

approximately the same value as the continuous measurement vector H(t) 

at t ime t = nT. 
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And the discrete measurement noise v will be defined as 
n 

1 
V - - v(X)dX , (5-13) 
^ ^ nT 

then the discrete measurement noise convariance is derived as 

r = Efv^} 
n '• n-" 

(n+l)T (n+l)T 
= -T J r E{v(X)v(o-) jdXdcr 
T nT nT 

, (n+l)T (n+l)T 
= "ô f r r(X)6(CT-X)d\dCT 
T nT nT 

=^r(nT). (5-14) 

In summary, the parameters and r^ of the discrete measurement 

process models are obtained from equations (5-12) and (5-14), respectively. 

C. Discretization of Output Equation 

In this section, the output equation (4-31) is going to be discretized. 

As can be seen from the derivation (5-6), the discrete states are samples 

of the continuous states at time t = nT. Hence the statistical properties 

of the continuous states ^(t) and discrete states ̂  are identical as the 

sampling interval T becomes small. The fixed-gain Kalman-Bucy filter 

(4-30) is an optimal filter estimating the continuous states §_(t); and 

the fixed-gain discrete Kalman filter, which can be built from the results 

of previous sections, is an optimal filter of Therefore the estimated 
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states in both continuous and discrete are same in the statistical sense. 

Comparing output equations (4-31) and (5-3), the discrete estimates 

i I are samples of Ç(t|t) at time t = nT, and the discrete output x is 
•"Ti |n ' n 

needed as a sample of x(t) at time t = nT. Therefore the discrete output 

matrix ̂  has the relationship with the continuous output matrix M(t) as 

^ = M(nT), (5-lj) 

where t = nT. 

D. Discrete Kalman-Bucy Derived Filter 

Now, in summarizing previous results, a discretized equivalent Kalman-

Bucy filter is finally achieved as follows. The discrete state estimation 

and the discrete output equations are 

= <5-16) 

and 

where 

x„ = (5-17) 
n 

and 

= "n^ln- (5-20) 

Vlln' 
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with 

(5-22) 

and 

Po|.l - '5-23) 

The above F , H and M are obtained from equations (5-8), (5-12) and 
n —n —n 

(5-15), respectively. Noise covariances and r^ are found from equations 

(5-10) and (5-14), respectively. A block diagram representation is shown 

in Figure 5.1. 

As described so far, the discretization procedure is straight forward 

as developed previously. However there is difficulty obtaining the state 

transition matrix of the system model (4-28), which is simply denoted as 

the equation (5-8). When the system matrix F(t) is solved and F(t) 

satisfies the commutative condition 

F(t^)F(t2) = F(t2)F(t^) (5-24) 

for all t^ and t^, then the state transition matrix is simply given by 

t 
«i(t,T) = expj F(\)d\. (5-25) 

T 

Two trivial cases where the commutative condition is valid are those in 

which F(t) is a time-fixed matrix, and those in which F(t) is a diagonal 

matrix. The later case is not satisfied in this new filter derivation 

except when the system (4-28) is scalar. It is because the system matrix 

F(t) is given as a companion form as can be seen from the equation (4-26), 
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discretized equivalent Kalman-Bucy filter discrete stochastic process models 
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—n —n 

unit T 
delay 
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Figure 5.1. Discrete stochastic process models and the discretized equivalent Kalman-Bucy filter 
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The scalar state transition matrix is obtained easily with a scalar F(t) 

from equation (5-25). For the former case, the state transition matrix 

is obtained without any trouble by the equation (5-25), too. 

When the system matrix F(t) does not satisfy the commutative condition 

(5-24), the state transition matrix can be obtained by a method known as 

the Peano-Baker method. This method is described in Appendix A. In this 

general case, the state transition matrix is represented by a matrizant 

according to this method: 

d ( t , T )  = y\(F) . (5-26) 

As is seen in equations (5-25) and (5-26), it is a little complex 

obtaining the discrete system matrix even it is denoted as the equation 

(5-8). An approximate procedure will be able to alleviate this problem. 

This simplification begins with the system matrix F^ first, and then the 

discretized equivalent Kalman-Bucy filter equations (5-16) through (5-23) 

are approximated such that those eight equations are reduced to three 

equations. 

If it is assumed that the sampling interval T is small, the system 

matrix is simplified as 

F^ = I + TF(nT), (5-27) 

where only the unit matrix term and first-order term in T are taken from 

both equations (5-25) and (5-26). The higher-order terms in T are 

supposed to approach zero as the sampling interval becomes small. 
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By substituting this approximation (5-27) into equation (5-10), the 

noise covariance is simplified also. This follows: 

= TQ(nT). (5-28) 

Another simplification begins with the realization of the discrete 

gain in terms of the continuous gain. First the a priori covariance 

P ,, I in the discrete filter is formulated in connection with the con-
n+1 |n 

tinuous covariance matrix. Substituting equation (5-19) into the equation 

(5-21) , this becomes 

Here it is assumed that r is much bigger than the term HP i ,H', for 
n —n n|n-l-n' 

a small sampling interval T, and then the bracket term in the above 

equation becomes 

Then equation (5-29), after using equations (5-12), (5-14), (5-27) and 

(5-28) , becomes 

—n n n-1 n 

(5-29) 

(5-30) 

- IiH(nT)'r-^ (nT)H(nT)P^|^ + TQ(nT). (5-31) 

This has been rearranged to give 
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"—sillli = F(nT)P , , + p I  ,F(nT)' 
T n|n-l n|n-l 

(5-32) 

For the small T again, this equation (5-32) is an approximation of the 

continuous covariance equation (4-33). Hence it can be said that the 

a priori covariance matrix has remained the same as the continuous 

covariance matrix P(tjt) during the discretization, and, therefore, it 

can be written as 

Vlln -
(5-33) 

for the time t = nT. With this result, the approximated equation (5-30) 

is also checked again. By substituting by the equations (4-27), (5-12) 

and r^ by equation (5-14) as 

HP. ,H' + r = [0 
—n n n-1—n n 

0 r(nT)] P (n-i)Tl(n-I)Tj 
Ixk 

-r": r 

0 

r(nT) 
kxl 

+ Y r(nT) 

= r(nT)^Py (n-l)T|(n-l)T] +ir(nT), (5-34) 

where P*j^[ (n-l)T ] (n-l)T] is a k x kth element of P (n-l)T | (n-l)T]. As 

the sampling interval T is small, the dominating term in the above equation 

IS r 
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Finally, the discrete gain is simplified. From the equations (5-18) 

and (5-30) 

K = P I iH'r'l. (5-35) 
—n njn-l—n n 

Substituting equations (5-12), (5-14) and (5-33) into this relationship, 

this becomes 

= TP(nT]nT)H(nT)r~^(nT). (5-36) 

Comparing this equation to the continuous gain (4-32), it can be seen 

that 

^ = TK(nT) (5-37) 

where the continuous time t = nT. 

Since an equivalent Kalman-Bucy filter as given by equations (4-30) 

and (4-31) has a fixed gain which is equal to B^, the corresponding 

discrete gain is as follows. 

= TB. (5-38) 

Once the gain in equation (5-16) is fixed as determined by equation (5-38), 

it is not necessary to go through the recursive covariance algothrithm in 

equations (5-18), (5-19), (5-21) and (5-23). 

The rest of the filter equations are summarized as follows: 

and 
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A  

X = M Ç I 
n -n^|n 

(5-40) 

where 

0 

0 

K 
ti (5-41) 

0 

T 

kxl 

Equations (5-39) and (5-40) are the final form of the new sampled-data 

digital filter corresponding to the continuous filter given by the 

equation (4-1). A block diagram for this new filter is shown in 

Figure 5.2. 

The stability of the new filter will now be checked with uniformly 

completely observable and uniformly completely controllable conditions. 

Fro= equation (5-27), the state transition matrix of the new filter is 

m-1 
TT [I + TF(^T)] for m > i 

-S,=i 
(5-42) 

I for i = m 

The observability matrix 0 is obtained from equation (2-20) as 

(5-43) 
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^-1 |n-l 

—n 

unit T 
delay 

[I-K H IF 1 —n—n-^ n-1 

Figure 5.2. A general block diagram of the discrete 

Kalman-Bucy derived filter 
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and from equation (2-22) the controllability matrix ^ is 

n i-1 i-1 
C = E { TT [I + TFaT)]}{ TT [I + TF(4T)]]', (5-44) 

i=m ̂ =m-l /L=m-1 

for some n ^ m. 

As can be seen from above two equations, both the controllability 

matrix and the observability matrix are positive definite and finite for 

a small T, and for all possible n. Hence the stability of the discrete 

Kalman-Bucy derived filter is guaranteed if the given continuous filter 

is stable. 

The design procedure for obtaining this new sampled-data digital 

filter can be summarized as follows: 

1) The classical continuous filter transfer function is given in 

general form of equation (4-1). 

2) The first step is the state representation of the classical 

filter and the determination of A(t) and M(t) from equations (4-5) 

and (4-7), respectively. 

3) The second step is to solve the steady-state covariance equation 

using equation (4-38) or (4-39) and to find its inverse matrix. 

4) The third step is to determine the continuous parameters F(t) 

—— 2 I  
and H(t) using the inverse covariance matrix P (tjt) and 

equations (4-19) and (4-20) in the time-fixed parameter system, 

or (4-26) and (4-27) in the time-varying parameter system. 

5) The fourth step is to determine the discrete parameters F^, 

H and M where F is obtained from the equation (5-27), H 
-n —n n ^ -n 

from equation (5-12), and M from equation (5-15). 
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6) The result is the new sampled-data digital filter called the 

discrete Kalman-Bucy derived filter. It is specified by 

equations (5-39) and (5-40). 
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VI. COMPARISON OF DISCRETE KALMAN-BUCY DERIVED FILTER 
AND z-TRANSFORM DERIVED FILTER 

A new sampled-data digital filter thus obtained from a classical 

filter will be called the discrete Kalman-Bucy derived filter. There are 

three alternate z-transforms which are known best. In this chapter, 

comparisons will be made between the discrete Kalman-Bucy derived filter 

and z-transform derived filters. 

When a sampled-data digital filter is realized with digital arithmetic 

elements, considerations of the computer size, speed, and accuracy of the 

implementation are necessary to assess the performance of the filter. The 

first two considerations may be compared by the number of additions and 

multiplications contained in the sampled-data digital filter. This implies 

that adders and multipliers in the hardware of the digital filter contribute 

mostly the digital filter size and speed. Especially the multipliers 

consume most of the computation time in the digital implementation. The 

third consideration is distinguished by the fidelity of the sampled-data 

digital filter as compared to the frequency response of the original 

classical continuous filter. 

A. Hardware Requirements 

In an analog system, the realization of a given system transfer func

tion is a difficult problem that has received considerable attention; but 

for a sampled-data system, the implementation of difference equation is 

almost trivial. Coefficient word length, computational word length and 

sampling interval with the sampled-data digital filter equations have to 
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be decided first. Filter accuracy problems are brought about mostly by 

the computational word length rather than the filter coefficient word 

length. It will be assumed in this dissertation that the word lengths 

are long enough so that they will not cause truncation errors. Since the 

computational time delay through the filter is defined as the time required 

to compute the present output x(nT) after the present filter input y(nT) 

has been sampled, the sampling interval T has to be chosen longer than 

the computational time delay. 

After the word lengths and the sampling interval are determined, the 

design considerations left are hardware considerations. They are com

positions of serial-parallel and combinational arrangements of integrated-

circuit chips. Serial-parallel multiplier, digital filter shift register, 

time-varying adaptive elements, and clock and word timing register chips 

have been made feasible by the rapid advances in integrated-circuit 

technology. The logic configurations for these chips are discussed by 

White and Mitsutomi (37). As an aid to understanding these chips, the 

shift register, the serial full adder, and the serial-parallel multiplier 

chips are discussed in Appendix B, 

White and Mitsutomi (37) developed their own chips, each measuring 

between 100 and 200 milimeters across length and width, which house a 

large number of circuits. For example, the serial-parallel multiplier 

chip contains 650 transistors. The shift register chip contains 1,200 

transistors which are designed for eight-bit plus sign-bit precision. 

According to their configurations, the bit time of multiplication input 

data can be between 600 nanoseconds and 100 microseconds. The multiplica-
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tional delay time can be calculated in this case. Since the longest word 

generated at the multiplier output gate is the same as the sum of 

coefficient word lengths, the multiplicant coefficient word length plus 

the multiplier coefficient word length, the multiplicational delay time 

is computed as follows: 

T. ' (G-1) 

where 

is a multiplicational delay time per channel used in the 

serial-parallel multiplier, 

is a multiplicant coefficient word length, 

is a multiplier coefficient word length, 

and Ty is a computer bit time in the multiplier. 

This multiplicational delay time is equal to two word times when lengths 

of the multiplicant and the multiplier words are same, i.e., 

A computational time delay for one data sample is represented as, 

therfore, 

Td > + tb)Ty, (6-2) 

where is a number of channels in the digital processing. From equation 

(6-2), it can be seen that the number of multiplications controls the 

computer speed as well as the computer size, mostly. 

Now the design of the discrete Kalman-Bucy derived filter is investi

gated. First, elements of F(t) and H(t) in equations (4-26) and (4-27) 

are defined as, in general case, 
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F(t) = 

0 

0 

1 

0 

0 

1 

G 0 . 

f^(t) f^ct) f^ct) fk_i(t) fk(t) 

kxk 

(6-3) 

and 

H(t) = [h^(t) h2(t) h2(t) hk(t)] 
Ixk 

(6-4) 

respectively. 

The reason that F(t) is represented as a companion matrix form is 

that A(t) in the equation (4-5) is given as a companion matrix form and 

the second term in the equation (4-26) has nonzero elements only in the 

kth row. The equation (6-3) becomes 

0 

T 

F = 
n 

1 

0 

0 

T 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T 

1 

0 

T 

Tf^(nT) Tf2(nT) ^^^(nT) . . . Tf^ ̂ (nT) l+Tfj^(nT) 

kxk 

(6-5) 
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by using the equation (5-27). Hence the coefficient matrix of the first 

term in the equation (5-39) is 

1 

0 

0 

T 

1 

0 

0 

T 

1 

. . . .  0  

. . . . 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T 

1 

0 

T 

e^(nT) 02(nT) ©^(nT) . 0^.1(nT) 8^(nT) 

(6-6)  

where 

0^(nT) = - Th^(nT) + T[1 - Th^(nT) }f ̂[(n-l)T] 

0^(nT) = - T^h^_^(nT) - Th^(nT) + T{1 - Thj^(nT) }f^[ (n-l)T] 

for i = 2, 3, . • . ., k-2, k-1, 

and 0j^(nT) = - T^hj^_^(nT) + [1 - Th^(nT)}{l + Tfj^[ (n-l)T]}. 

One of the discrete Kalman-Bucy derived filter equations (5-39) and (5-40) 

becomes 

A 

^1 
1 T 

A 

^2 
0 1 

A 

^k-1 

o
 

o
 

A 

:k 0^(nT) 02(nT). . . 0 

n In 

0 

0 

A 

:i 
0 

A 

:2 

+ 

0 

A 

5k_i 0 

A 

_ :k . 
T 

kxk n-1 n-1 kxl 
(6-7) 
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What can be seen from the above equation is that, for this recursive 

estimation, (2k - 1) additions and 2k multiplications are needed. Of the 

2k multiplications, k are constant multiplications by T. Moreover it can 

be seen that this estimator needs k memories for the previous states 

A 

^-1 |n-l* 

The output equation (5-40) has k multiplications and (k - 1) additions 

as can be seen from 

Xn = [Po(nT) p^(nT) pj^_^(nT)] 
Ixk 

n |n 

(6-8) 

A generalized block diagram of the new filter is shown in Figure 6.1. 

Consequently, (3k - 2) additions, 3k multiplications, and k memories 

for each storage are needed. The k multiplications of those are done by 

constant multiplication T. 

The number of channels which delay the computation speed is two 

multiplication channels and (k + 1) addition channels. The two 

multiplication channels are multiplications of T and y^, and ^(nT) and 

A ,  

^^(n| n), as can be shown in Figure 6.1. The rest of the multiplications 

(3k - 2) are estimated during or before these two multiplications. If the 

digital filter word length, is given to be and is 

=>k-l 
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A 

-1 

5k-l 

-1 

- 2  

6.1. A block diagram of the discrete 

Kalraan-Bucy derived filter 
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computer bit time in the adder, the computational delay time becomes 

However as can be seen from equations (6-7) and (6-8), two equations 

may be solved in terms of such that the combined discrete filter equation 

is simpler than its original equation which is represented according to 

states given in the first step. It is because the state defined in the 

first step need not remain same. In this way, the form of Kalman-Bucy 

filter equations or the form of discrete Kalman filter form is changed 

and a simpler discrete filter equation is obtained. In this case the 

hardware requirements are less and the computational time delay becomes 

shorter than before. 

- 1  A - ] _  A  

Setting the delay operator z as i|n-l ~ ̂  ^[n' equations (6-7) 

and (6-8) are equivalent to the simple equation noted by Wj^(z), i.e., 

T [ Z  P i _ i ( n T ) ( T z - l ) k - i ( l _ z - l ) i - l }  

 ̂ (1-z'̂ )̂ '̂  - { E 8 (nT)(Tz-l)k-i(l_z"l)i"l}z"l 
i=l 

(6-10) 

This derivation is explained in Appendix C. The denominator of the W^(z) 

is a kth-order polynomial in z ̂  and the order of the numerator is less 

than k. Now suppose the above equation (6-10) is solved and rearranged 

-1 
in order of z , then this can be written as 

k-1 
E B^(nT) z 

Ŵ (z)  ̂ . (6-11) 

1 - E A. (nT) z"^ 
i=l 
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Figure 6.2 shows the block diagram this simplified notation. 

As can be seen from these, the new filter in this arrangement needs 

2k multiplications and (2k - 1) additions. There are k shift registers 

needed for memories. Moreover, there is only one channel which delays 

the multiplicational time. It is B with the same state in forward loop. 
o 

Additional channels are (k + 1). The computational time delay, therefore, 

can be represented as 

T , = (k + l>e, T + T, . (6-12) 
d w a w b 

These configurations will be compared to the z-transform derived 

filters using same serial machine. When the given transfer function is 

solved in partial fraction form as the equation (3-21), the corresponding 

sampled-data digital filter transfer function is given as the equation 

(3-25) and the block diagram is shown as Figure 3.3. Here m^ + 2m^ will 

correspond to k. The equation (3-25) shows m^ times two multiplications 

and one addition, and times four multiplications and three additions in 

each term. Hence the number of multiplications are (2m^ + A^ig) = 2k, and 

the number of additions are (2m^ + Am^ - 1) = 2k - 1 including (m^ + m^ - 1) 

additions at the output gate. 

In this case, the number of multiplications and the number of additions 

remain the same as those of the new filter. The number of shift registers 

needed for memories are m^ + 2m^ which are also the same as those of the 

discrete Kalman-Bucy derived filter. The number of channels in this method 

are one multiplicational channel and (m^ + m^ +1) additional channels. 

The computational time delay is 
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I 

- 1  

Figure 6.2. A block diagram of the new filter 
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Td = (m^ + 

And when the given transfer function is factored and represented as 

the equation (3-33), the sampled-data digital filter transfer function 

becomes as the equation (3-34) in the bilinear z-transfonn digital filter, 

and the equation (3-39) in the matched z-transform digital filter. In 

this case, m^ + 2m^ corresponds to k and m^ + 2m^ corresponds to k - 1, 

comparing to equation (4-1). From equation (3-34) and Figure 3.4, it is 

evident that the digital implementation of the equation (3-34) needs 

2m^ + 4m^ = 2k multiplications and (2m^ + 4m^) = 2k additions. This 

implies that the bilinear z-transform derived filter has one more addi

tion and the same multiplication as those of the new filter. Here the 

one multiplication is added for the total gain level factor. And as is 

seen from Figure 3.5, the computational time delay is longer than that 

of the new filter as 

Td = (*1 + + ̂w'̂ b' 

It is because there are two additional and one multiplicational channel 

in each first-order digital filter element and there are two additional 

and one multiplicational channels in each second-order digital filter. 

But each multiplication is performed before the input has been sampled and 

during the gain multiplication. Since the serial machine is used, each 

multiplicational channel has two word times, the computational time delay 

becomes as equation (6-14). The memories needed for storing previous 

states are k which are the same as those in the new filter. 
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The matched z-transform derived filter has 2k multiplications and 

2k - 1 additions which are the same number as the bilinear z-trans-

form derived filter with the exceptions of one less addition. This is 

due to the term of T™5 in equation (3-39). Hence the computational time 

delay for this matched z-transform derived filter becomes one less ad

ditional time delay than the bilinear z-transform derived filter such that 

Td - (^1 + k - l)t^T^ + . (6-15) 

As results indicated, the discrete Kalman-Bucy derived filter will 

have the same number of multiplications and additions as the partial 

fractional digital filters (impulse invariant z-transform derived filter 

and bilinear z-transform derived filter) or factored matched z-transform 

derived filter, and less numbers than factored bilinear z-transform 

derived digital filter. And the computational time delay is about the 

same as the impulse invariant z-trans form derived filter, and is smaller 

than those of the others. These will be discussed again with examples. 

B. Fidelity of Discrete Kalman-Bucy Derived Filter 

Now the accuracy of the discrete Kalman-Bucy derived filter is 

compared to its original continuous filter and z-transform derived 

filters. Frequency response functions are employed for this fidelity 

purpose. 

To obtain the amplitude response with respect to frequency in a 

continuous filter, the Laplace transform might be applied to the filter 

response function and its magnitude gives the frequency response of this 
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filter in usual manner. However, an immediate difficulty is encountered 

when this idea is applied to the discrete filter. If the filter response 

function is given in discrete form, this ends up as an equation with 

delay operators. As a common method, a w-transform is used. But this 

gives only a continuous correspondence to the discrete filter transfer 

function, and this can not be ideal as the frequency becomes high when 

compared to the sampling frequency. 

The difficulty just described can be obviated by defining a 

frequency response in amplitude as 

transfer function) = fundamental of output x(t) 
amplitude of input y(t) 

.  (6-16)  

When a sinusoidal function is an input of the continuous filter, this 

definition gives a clear concept of the frequency response. Consequently, 

in the discrete filter, the frequency response can be evaluated in this 

manner. When a low-range frequency response (inside the quarter-sampling 

frequency) is of interest, the w-transform method gives an algebraic 

representation which will be described soon. 

To convert the continuous filter transfer function to the frequency 

response function, it is only necessary to make a substitution of variable. 

The reason for this is that, if the transfer function is known, the 

steady-state response to a sinusoidal driving function is described by 

the transfer function where s is replaced by juu. The frequency response 

function of equation (4-1) is, therefore. 
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Equation (6-17) will give the original continuous filter amplitude which 

will be compared with the corresponding sampled-data digital filters. 

The identity of the phase which is the phase associated with the 

continuous filter will not be considered in this dissertation. 

In order for the amplitude response to be applicable to the discrete 

Kalman-Bucy derived filter, it is necessary to write the digital filter 

transfer function W^Cz) in the form of a frequency response function by 

substituting 

z = (6-18) 
1 - w 

into the function for W^Cz) which will be represented by W^(w). Since 

the imaginary value of w is mapped from s = juu in the zero strip, the 

frequency response function can be derived from W^(w) by letting w take 

on imaginary values, and, thus w = jj , the amplitude response is 

evidently applicable to W^(jT) by direct analogy to the familiar 

application in the realm of continuous filters. 

The next step in developing the frequency response by use of the 

w-transform is to relate the dimensionless frequency cj to the dimensional 

frequency uu. From relationships (6-18) and w = , it follows that 

- 1 

By use of the identities, tanh(jci/r/2) = (e^'^ - l)/(e^^ + 1) = j tan(uuT/2), 

the expression for the dimensionless frequency becomes a = tan(uuT/2). 

Using T = 2rr/uj^, where uj^ is a sampling frequency, an alternate form is 

obtained : 
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a = tan — tt . (6-20) 

As can be seen from the above equation, the full range ofa,-=°<CT < oo, 

corresponds to the w range - uu^/2 < uu < 0)^/2. 

Amplitude response of the equation (6-17), which will have a 

frequency response function derived by a w-transform method, can be 

compared to that of the equation (6-16) by using a numerical example. 

Obviously both responses will be about the same within the quarter-

sampling frequency when equation (6-16) is processed by the full word-

length machine. Those responses will be discussed in the following 

subsection. 

C. Examples 

Four examples are presented to illustrate the use of the discrete 

Kalman-Bucy derived filter design technique. It will be assumed that 

continuous time-fixed parameter filters: the first-order filter, the 

second-order filter and the third-order filter, are given, and also that 

a first-order time-varying parameter filter is given. Those examples 

are of very limited practical interest, but they are useful in conveying 

insight into the sampled-data digital filter design methods. 

First-order filter with a real pole and second-order filter with 

complex conjugate poles which are time fixed become elements of z-trans-

form derived filters as given by equation (3-21) when the continuous 

filter transfer function can be given in partial fraction form. The 

third-order time-fixed parameter filter has to be rearranged so that it 
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is composed of the first-order filter with a real pole and the second-

order filter with complex conjugate poles. But the discrete Kalman-Bucy 

derived filter design method does not need to do this. 

Comparisons are made with regard to two aspects. The first is 

concerned with the amount of digital hardware required for the discrete 

Kalman-Bucy derived filter and z-transform derived filters. The second 

aspect is the fidelity of each in frequency response of amplitude. 

For the purpose of demonstrating an amplitude response of the new 

filter design method to the time-varying parameter continuous filter, a 

simple first-order time-varying parameter filter is considered in the 

first example. This is called a finite-time averaging filter. As it 

will be seen in Example 1, this finite-time averaging filter is an 

exceptional case of the time-varying denominator in the transfer function 

being the fixed-parameter new filter. Even though there is not any 

time-varying parameter in the denominator of this averaging filter, the 

time-varying covariance matrix is obtained. This is due to the only 

single s term in the denominator. 

Since the developed procedure works on the time-varying parameter 

system matrix A(t), the kth-order continuous filter also can be trans

formed into a sampled-data digital filter form. In this case, the only 

problem occurred is in the second step which solves the covariance 

equation (4-39). A digital computer will be introduced to solve these 

k(k + l)/2 firsc-order linear differential equations and will give the 

equilibrium covariance matrix P(tjt) in function of time. However this 

dissertation will be concerned only with the simple case. 
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1. Example 1 

A finite-time averaging filter, which weights all of the past input 

data from t back to zero uniformly, will be considered in this example. 

The block diagram and the desired weighting function are shown in 

Figure 6.3 and Figure 6.4, respectively. The mathematical expression 

for this weighting function is 

w  (T,t) =/ % for 0 ̂  T ̂  t, (6-21) 

for T < 0 or T > t, 

and the Laplace transform with respect to the age variable T is 

W(s,t) * •< J for 0 ̂  T s t, (6-22) 

for T<0 or T > t . 

Problem in this example is to find the corresponding discrete Kalman-Bucy 

derived filter. 

According to the developed steps, the discrete parameters are 

estimated as follows: 

1) a(t) = 0 

m(t) = ̂  

2) P(t|t) - a(t)p(t|t) - p(t|t)a(t) -2=0 

therefore p(t|t) » 2t 

This example is taken from Brown and Nilsson (5). 
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y(t) 
I  
s 

1 x(t) 

Figure 6.3. Finite-time averaging filter 

w(t,t) 

(age variable) 

Figure 6,4. Weighting function for the finite-time 

averaging filter 
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—— 1 I 1 hence p (t|t) = — for t > 0 

3) f(t) = a(t) + p"^(tlt) = ̂  

h(t) = p 

4) f = 1 + Tf(nT) = 1 + ̂  
n Zn 

^ ° M 

"n • • 

Therefore the discrete Kalman-Bucy derived filter has the block 

diagram in Figure 6.5 and equations as follows: 

and 

(6-24) 

where 

(3|o = 0 ' 

Equations (6-23) and (6-24) are combined as 

*n = [I - + n 

and X =0. 
o 

Now this discrete Kalman-Bucy derived filter of the finite-time 

averaging filter will be compared to the continuous finite-time averaging 
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unit T 
delay 

n-1 n-1 

nT 

A discrete Kalman-Bucy derived filter for Example 1 

1^ 
n •«-

unit T 
de lay 

n-1 

b) A simplified block diagram of a 

Figure 6.5. A finite-time averaging filter 
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filter. The impulse response function of the original filter is the 

inverse Laplace transform of the equation (6-22), and it is given by 

1/t. The response to a unit step input is a unit step function. The 

impulse response function of the new sampled-data digital filter (6-25) 

is obtained with y^ = l/T and y^ = 0 for i = 2, 3, . The unit step 

response function is obtained by y^ = 1 for i = 1, 2, . They are 

plotted in Figure 6.6 and Figure 6.7. 

As can be seen from the equation (6-25), the realization of this 

time-varying parameter filter needs two time varying adaptive elements, 

which will track the time-varying coefficients, two multipliers and one 

adder. And one memory is needed for storing the previous state. 

It will be noticed that z-trans form derived filters can not be 

applied to this time-varying parameter filter. 

2. Example 2 

A first-order real pole filter which has time-fixed parameters 

C C  and 6 will be discussed. As can be seen from equations (3-21) and 
o o 

(3-33), this first-order filter is a kind of basic filter in z-transform 

derived filters. The transfer function of the continuous first-order 

filter is 

W(s) " Ar- • (6-26) 
o 

From equations (3-22) and (3-37), the impulse invariant z-transform 

derived filter and the matched z-transform derived filter have the 

sampled-data digital filter transfer function 
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x(t) 
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50 
continuous filter 

discrete 
Kalman-Bucy derived filter 

0 

1  n  
JL V 5 

t = nT (seconds) 

Figure 6.6. Impulse responses of the finite-time averaging 

filter when T = 0»01 second 
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x(t) 
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1- continuous filter 
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/ 1 / ^—discrete Kalman-Bucy derived filter 
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/ 

1  
I 1 1 1 1 1 1 1 1 1 I 1 ' 

0 5 10 n 

t = nT (seconds) 

Figure 6.7. Unit step responses of the finite-time averaging 

filter when T = 0,01 second 
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W (z) . W (2) = ,1 . (6-27) 
1 - e ° 2 

The bilinear z-transform derived filter corresponding to the equation 

(6-26) is, from the equation (3-27), 

2(1 + -§-) 
= — - (6-28) 

. -1 
z 'X T 

The discrete Kalman-Bucy derived filter for the given continuous 

filter (6-26) is obtained by the following steps. 

i ) a = - u 
o 

m = r 
o 

2) ap(t|t) + p(t|t)a' +2=0 

—- 1 2_ 
therefore p(t|t) = — 

o 

— "" 1 I 

hence p (t t) = a 
o 

3) r =a+ p ^(tjt)=0 

li = p ^ (t 11) = 

A) 1 - I + Tf = 1 
n 

lî - r 
n (1 

m - [ 
n o 
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Therefore the new filter equations are 

5n|„ = 

and 

"n • Po^nln ' 

A 

where §1 = 0, 
o| o 

Substituting into the first equation, a simplified equation results as 

.„=(!- . (6-31) 

It is noted here that equation (6-31) is a first-order simplification of 

the equation (6-27) using a series expansion of the exponential term. 

Block diagrams of the resulted equations (6-29), (6-30) and (6-31) are 

illustrated in Figure 6.8. 

The numbers of multiplications and additions for this simplified 

new filter are the same as those for the impulse invariant z-transform 

derived filter and the matched z-transform derived filter which need 

two multipliers, one adder and one memory. The bilinear z-transform 

derived filter needs two multipliers, two adders and one memory. 

From equations (6-11) and (6-18), the w-transform of the discrete 

Kalman-Bucy derived filter becomes, with w = jj, 

° 1 + - Dj. 
o 

, uu where a = tan — TT . 
^o 
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unit T 
delay 

a) A block diagram for equations (6-29) and (6-30) 

unit T 
-sieiaji 

1 - Ta 

b) A simplified representation of a 

Figure 6.8. Block diagrams of the first-order time-fixed 

discrete Kalman-Bucy derived filter 
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The frequency response of tlie continuous filter (6-26) is 

W(jw) T , (6-33) 
O 1 + — juu 

«0 

and frequency responses of z-transform derived filters are 

V f '  '  V f > • 1 

and 

' (6-35) 
a 2 

o 

, uu where a = tan — TT . 
'̂ o 

For the small T, the break frequencies of those sampled-data 

digital filter poles are 

-1  1  
uu„ = — tan —z in the new filter, 
N tt - 1 

a T o 

^ . -1 1 
^ tan -a T Che impulse invariant and 

^ + 6 ° matched z-transform derived 
I _ filters, 

(6-36) 

^o -1 1 
uu_ = — tan —-— in the bilinear z-transform derived 

' " rr O 
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and they are very close to the continuous filter break frequency uu^ = 

The break frequencies which appeared in the new filter, the impulse 

invariant z-transform derived filter and the matched z-transform derived 

filter, become large as the sampling interval becomes small. This 

follows from 

= 2t ' (6-37) 

which is one quarter of the sampling frequency, and hence this break 

frequency exists outside of our interests. 

3. Example 3 

A general second-order time-fixed continuous filter given by the 

equation (6-38) and its block diagram shown in Figure 6.9 will now be 

considered. 

pls + p 
W(s) = (6-38) 

s + a, s + a 
1 o 

where parameters and are assumed to be positive constants, 

and the denominator has complex conjugate poles. In order to be 

applicable to z-transform methods, this transfer function is also 

assumed to be factored as 

s + Y ^o " ̂ ^1 0 
W(s) = p f r + — ^ y. (6-39) 

^ (s + y) + 0 8 (s + y) + 8 

Then the z-transform derived filters have the following sampled-data 

digital filter transfer functions: 
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x(c) 

Figure 6.9. A general block diagram of the second-order 

time-fixed continuous filter 
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w-r(2) = 

r -VT -It -yx -1 
- e ̂ ^(cos8T)z } + —g Te (sin0T)z 

^ 1 - 2e"^^(cos0T)z~^ + 

(6-40) 

p̂ t 

wgcz) 
2 (1+z ̂ ){(^+l) + (^-l)z + 

+2(ï!±g!t2 L)Z"' + C ̂  -YT + 1)Z"^ 

(6-41) 

and 

w„(z) = 
p̂ t(1 -

-YT -1 -2YT -2 
1 - 2e (cos9T)z + e ^ z 

(6-42) 

Now the discrete Kalman-Bucy derived filter is obtained from the 

equation (6-38) as follows: 

1) A = 
0 

-a -a. 

>1= [p, p,] 

2) AP + PA' + 
0 0 

0 2 
= 0 

a a. 
o 1 

therefore P = 

0 — 
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' 

hence P 
a. 

0 0 —-1 0 1 
• A + -

0 1 -a 0 
o 

= [0 l]p"^ " [0 

4) » I + TF 
-a T 1 
o 

s. - [0 «1  ̂

m^-tpo pi]-

The discrete Kalman-Bucy derived filter equations are 

and 

A 

§ .  

A 

§ .  
njn 

-a T(l -a.T) 1 -a.T O i 1 
K 

n-l|n-l 

'n " [9° 

(6-43) 

(6-44) 

an 
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The sampled-data digital filter transfer function of the above equations 

IS 

P T + (p - p,T)z"^ 
W (z )  =  i  IT  2-^2 •  (6-45)  

1 - (2-a^T)z + (1-a^T)(l+a^T )z ^ 

The block diagrams for the new digital filter are shown in Figure 6.10. 

The number of additions and multiplications for this new filter 

realization is compared to those of equations (6-40), (6-41) and (6-42). 

The new filter realization needs three adders, four multipliers and 

two memories which are the same as in the impulse invariant z-transform 

derived filter and the matched z-transform derived filter, and which is 

one less adder than in the bilinear z-transform derived filter. 

The frequency response of the new filter transfer function (6-45) 

is solved to be 

2 2 2 /")o m _ O \  r ^ \  ̂ ^ OQ T 
w (j.) = f 2 1 2- . (6-46) 

{4 -2a^T+a^T^(l -a^T)} (jj)^+2{aj^T -a^T^(l -a^T)}j7 

+ (l -â t) 

While frequency response functions of z-transform derived filters are 

+pĵ e"'̂ ĉos0t ^̂ ê '̂ sin9t3t(j7)̂  

+ 2p̂ tj3- +[p̂  -p̂ e"ytcos8t+^2Zl2ie-ytgin9t]t 
2 ' (6-47) 

(1 +2e Y^cosGT +e ̂  )(jT) +2(1 - e ̂  )jo 

+ (1 - 2e"^'^cos0T+e"^^) 
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(a) A block diagram for equations (6-43) and (6-44) 

-(1-a T)(l+a T ) 

(b) A simplified representation of (a) 

Figure 6.10. Block diagrams of a second-order time-fixed 

discrete Kalman-Bucy derived filter 
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2Ç> Tp + p 
W_(j3) = ^ ô J-J , (6-48) 

4(jy) + 4YTjj + (Y +e )T 

and 

[pj^T(l -YT + e"^"^) +P^T^](jj)^+2[p^T(l -YT) +P^T^}j3-

+ {p̂ t(l -yt - e"̂ )̂ +i3̂ t̂ } 

^ (1+2e"'^'^cos0T+ e"^^)(jT)^+2(1 - e"^^)jT 

+ (1 - 2ê ^̂ cos8t + e~̂ )̂ 

(6-49) 

where 

uu g = tan — tt . 

Fidelity of each filter is compared using equations (6-46), (6-47), 

(6-48), (6-49) and the continuous filter frequency response function. 

Break frequencies in each filter response equation have about the same 

positions as those of the continuous filter, and, hence, they have the 

same responses as the continuous filter inside the quarter-sampling 

frequency. 

4. Example 4 

Now to be considered is a three-pole Butterworth low-pass filter 

with a cutoff frequency uu^ = 1. The continuous filter transfer function 

JLS given as 

W(s) = -^r . (6-50) 
s + 2s + 2s + 1 
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Its block diagram is shown in Figure 6.11. 

The discrete Kalman-Bucy derived filter is obtained as follows: 

0 1 0 

1) A = 0 0 0 

-1 -2 -2 

M = [ 1 0 0] 

0 0 0 

2) AP + PA' + 0 0 0 = 0 

0 0 2 

2 
3 

0 
1 
•3 2 0 -3 

p = 0 
1 
3 

0 P"^ = 0 3 0 

1 q 2 
-3 0 2 

3 3 

0 0 0 0 10 
—— 1 

3) F = A + 0 0 0 P = 0 0 1 

0 0 1 0 - 2  0  

4) F = I + TF = 
n 

r-1 = [1  0 

1 T 0 

0 1  T 

0 -2T 1 

\  = [1  0  2 ]  

M = [ 1 0] .  
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y(t) x(t) 

Figure 6.11. A block diagram of a chrce-pole Butterworth 

low-pass filter 
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The discrete Kalman-Bucy derived filter equations are 

n n 

1 

0 

T 

1 

-T -2T+3T 

0 

T 

1-2T 
A 

3̂ 

+ 

n-1 n-1 

0 

0 

1 

n 

and 

X = [ 1 
n 

0 0] 

n| n 

where the initial contitions are given with zeros such as 

A 

:2 = ° 

A e i 
^3 J 

o|o J 

(6-51) 

(6-52) 

Equations (6-51) and (6-52) are combined in the sampled-data 

digital filter transfer function form as 

ŵ cz) = 
t̂ z-z 

1 - (3 - 2T)z"^ + (3 -4T +2T^ -3T^)z"^ 
(6-53) 

(1 - 2T +2T^ -4T^)z"^ 

-1 . 
where z is a delay operator. The block diagrams of equations (6-51), 

(6-52) and (6-53) are shown in Figure 6.12. The frequency response 

function of this new filter is 
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-2T + 3T 

X 

a) A block diagram of equations (6-51) and (6-52) 

(3-2T) 

-(3-4T+2T -31) 

(1-2T+2T -4T ) 

b) A simplified block diagram of a 

Figure 6.12. Block diagrams of three-pole Butterworth low-pass 

discrete Kalman-Bucy derived filter 
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t^(l-jj)(l+jj)^ 
^ ~ 3 2 3  2  3 2  ( 6 - 5 4 )  

^ T + (4T - 9T ) jy + (8T - 8T + 15T ) ( jj ) 

+ (8 -8T +4T^ - 7T^)(jT)^ 

and its approximation for the small T is 

2 , -
( 1  +  ^ +  (^ p  )  }  

, uu 
where o' = tan — tt . 

ô 

It should be noticed here that the denominator of this equation (6-55) 

is close in form to that of the given continuous filter transfer 

function. 

The impulse invariant z-transform of the continuous filter equation 

(6-50) is obtained as 

W_(z) = ^ 
 ̂ 1 - e-t,-! 

(6-56) 

T - Te"^(cos-^T+ ̂ sin^T)z"^ 

1 - 2e"'̂ (cos-̂ t)z"̂  + e'̂ z'̂  

and its frequency response function is 
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where 

T[v +v jj +v (jj)^}(l + jj) 
W^(jj) = . (6-57) 

{(1 -e'^)+ (l+e"^)jT}[ 6^+ 6^jj + 5 

6̂  = 1 - 2e'̂ coŝ  ̂+ e'̂  

6̂  = 2 - 2e"̂  

6̂  = 1 + 2e"̂ cos-̂  + e"̂  

o V = 2e"^ - e"^(cos"^ --^sin^) -e (cos^ sin^Qr) 2" "73̂ " 2"̂  ĉos—i-r̂ sxn—i 

= -2{e ̂  - e 2^(cos-^^ +-^sin-^^^)} 

Vg = - e cos-^ " ( e"^ + e ̂ )sin-^ . 

The bilinear z-transform derived filter of the continuous filter 

transfer function (6-50) is 

t (1 + z"̂ )̂  

8(1 + j) (1 +f+4~) 

= —Tï —z 

(1 —̂  z-b(l-2 ^ 
i + §  ( 1  + 1  +  r  )  

and its frequency response function is 

(6-58) 
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wg(jj) = — . (6-59) 
(̂ p"+]-){ (̂ j7) + +1} 

The matched z-transform derived filter corresponding to the 

equation (6-50) is 

° (i - e-̂ z'sd - 2e-wcoŝ z-l + 

and its corresponding frequency response function is 

) = t^g + tj)^ 

{(1 -e'^) + (1 +e"̂ )j7}{(l -2e"^cos-^ + e"^) 

+ 2(1 -e"̂ )jt + (l+2e'̂ cos-̂  + e"̂ )(j7)̂ } 

(6-61) 

As hardware requirements, the new filter (6-53) needs four 

multipliers, three adders and three memories. The z-transform derived 

filters all require more elements. The impulse invariant z-transform 

derived filter (6-56) requires six multipliers, four adders and three 

memories. The bilinear z-transform derived filter (6-58) needs four 

multipliers, six adders and three memories. And the matched z-transform 

derived filter (6-60) requires four multipliers, three adders and three 

memories, which are same numbers as the new digital filter. 

The fidelity of each filter is shown in Table 6.1, where the sampling 

interval is T = 1/100 seconds. 
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Table 6.1. Fidelity comparison (unit db) 

frequency continuous DK-BD impulse bilinear matched 

5 -89.83 -89.67 -89.85 -90.06 -89.67 

10 -107.89 -107.73 -107.90 -108.77 -107.73 

20 -125.95 -124.12 -126.06 -129.74 -124.13 

Equations (6-53), (6-56), (6-58) and (6-60) are used for calculating 

frequencies of amplitudes. They are compared to the original frequency 

response function of the given continuous filter. As can be seen from 

this table, the discrete Kalman-Bucy derived filter has as good fidelity 

as the others. The quarter-sampling frequency in this example is f = 25. 

The last frequency in the above table is close to this. A sample 

printout of the computer program used for the responses is shown in 

Appendix D. 



www.manaraa.com

119 

VII. CONCLUSIONS 

This dissertation develops a systematic design approach for digital 

implementation of any continuous filter whose transfer function is given 

with a ratio of two polynomials. 

The new feature of this method, called the discrete Kalman-Bucy 

derived filter, begins with the equivalent Kalman-Bucy filter which is 

composed of the fixed-gain scalar-measurement Kalman-Bucy filter and 

the additional output equation. The state representation of the 

denominator of the continuous filter transfer function leads to a fixed-

gain Kalman-Bucy filter and that of the numerator becomes an output 

equation. Both transient-state and steady-state behaviors of the 

equivalent Kalman-Bucy filter are identically conditioned to those of 

the given analog filter. The input signal of the equivalent Kalman-Bucy 

filter is supposed to be generated by an imagined stochastic process 

model. Noise statistics in the stochastic signal and measurement process 

models are assumed to be simple so that the matrix Riccati-type steady-

state covariance equation is represented as a set of simple first-order 

linear differential equations. 

The next step is the discretization of the equivalent Kalman-Bucy 

filter. The fixed-gain Kalman-Bucy filter is discretized to be a form 

of the discrete Kalman filter and the output equation is obtained simply 

by sampling at discrete time. Since the gain is also fixed after 

discretization and the sampling interval in discretization is small 

enough, the discretized equivalent Kalman-Bucy filter is simplified. 
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which is called a discrete Kalman-Bucy derived filter. It is also shown 

that the new filter produces the same degree of stability as its analog 

counterpart. 

One advantage of this approach is that the procedure obtaining the 

discrete Kalman-Bucy derived filter is a simple routine matter. It is 

summarized with four steps : 

1) State representation of the given continuous filter transfer 

function (4-1), which gives A(t) and M(t) from equations (4-5) 

and (4-7), respectively. 

2) Solution of the steady-state covariance equation and its 

inverse matrix, where the steady-state covariance equation is 

given by the equation (4-38) in the time-fixed parameter system, 

or by the equation (4-39) in the time-varying parameter system. 

3) Continuous parameter determinations, where the continuous 

parameters F(t) and H(t) are obtained from equations (4-19) 

and (4—20) in the tzme-fzxed parameter system, or from 

equations (4-26) and (4-27) in the time-varying parameter 

system, respectively. 

4) Discrete parameter determinations, where the discrete parameters 

F , H and M are obtained from equations (5-27), (5-12) and 
n' —n —n ' 

(5-15), respectively. 

Then the discrete Kalman-Bucy derived filter equations are given by 

equations (5-39) and (5-40), or the simplified equation is obtained 

from the equation (6-11) which is the desired s ampled-data digital 

filter transfer function. 
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The other advantage is that the new filter design method can apply 

to the time-varying parameter continuous filter as well as to the time-

fixed parameter continuous filter. The only difference in the design 

procedure exists in the second step. However, the time-varying parameters 

in the numerator of the given filter transfer function do not affect 

the conqjositions of the new filter. When the denominator of the analog 

filter consists of time-varying parameters, the steady-state matrix 

covariance equation in the second step becomes a set of first-order 

differential equations. While, if the denominator of the given transfer 

function is time fixed, then the steady-state matrix covariance equation 

becomes a set of algebraic equations* Since the set of first-order 

differential equations is linear, the second step will also be simple. 

As an example of a time-varying parameter filter, a finite-time averaging 

filter is designed. The impulse response and the step responsi of this 

digital filter are compared to its continuous responses and they are 

shown to be invariant after being discretized. 

Another advantage of the new approach is that the resulting discrete 

Kalman-Bucy derived filter is better in some cases than the z-transform 

derived filters. Comparisons are made on the hardware requirements of 

digital implementations and the fidelity of each sampled-data digital 

filter in terms of frequency response. Since the discrete Kalman-Bucy 

derived filter equations (5-39) and (5-40) can be combined, the number 

of multiplications and additions required for the new sampled-data 

digital filter is equal to or less than any other sampled-data digital 
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filters. The combined equation (6-11) of the discrete Kalman-Bucy 

derived filter is compared to other sampled-data digital filter transfer 

functions. 

Three examples which are time-fixed are considered in this disserta

tion. A first-order real pole filter designed by the new approach has 

the same amplitude response as that of the continuous filter within the 

quarter-sampling frequency as shown in the equations (6-36) and (6-37). 

In this case, the number of hardware requirements is the same as that 

of the impulse invariant z-transform derived filter and that of the 

matched z-transform derived filter, and is smaller than that of the 

bilinear z-transform derived filter. A second-order filter which has 

complex conjugate poles is designed by the discrete Kalman-Bucy derived 

filter approach» The amplitude frequency response in this example has 

satisfactory results when compared to its original continuous filter 

response within the quarter-sampling frequency. The figure of hardware 

^ Ô r» t r» orn Or-* c -îr-» < q ^V,r> q m oq -?•-» +-T.» a r* n q r» f •P-^^qt- — 

order filter* That is, the number of hardware requirements is the same 

as that of the impulse invariant z-transform derived filter, and that of 

the matched z-transform derived filter. And a three-pole Butterworth 

low-pass filter is designed by the discrete Kalman-Bucy derived filter 

method. The frequency response function in this example shows that the 

new filter design approach can be applied to higher-order continuous 

filters, and the responses of discrete Kalman-Bucy derived filters are 

very close to the original continuous responses. The number of hardware 

requirements in this third-order filter are less than those of the impulse 
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invariant z-transform derived filter, or those bilinear z-transform 

derived filter, and the matched z-transform derived filter. By these 

examples, the results of the discrete Kalman-Bucy filter approach are 

demonstrated to be satisfactory. 
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X. APPENDIX A 

This appendix will derive the expression for the state transition 

matrix in general time-varying parameter system. Suppose the system is 

given by equation (4-28), and the homogeneous solution of this equation 

is interest, the state transition matrix is obtained from this solution. 

That is, the homogeneous equation is 

1(C) = f(t)l(t) . (a-1) 

Then by integrating this equation, the integral equation 

t 
L(t) = 1(T) + J F(X)l(\)dX (A-2) 

T  

is obtained, where |_(T) is an initial condition at time t = T. This 

equation is called a vector Volterra equation. 

Equation (A-2) can be solved by repeated substitution of the right 

side of the integral equation into the integral for |_(X ). For example, 

the first iteration is 

t X 

1(C) = 1(T) + J F(X){1(T) + J F(a)L(a)dj}dX . (A-3) 
T  T  

The expression can be simplified somewhat by the introduction of the 

integral operator F, where is defined by 

t 
r( ) = J ( )dX. (A-4) 

T  

Using this operator notation, the equation (A-2) becomes 
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l(t) = 1( t )  + r[F(\)]L(X)  . (A-5) 

If the procedure shown in equation is continued, then |.(t) is obtained 

as the Neumann series 

l(t) = [i +r[f(x)] + r[f(x)r[f(a)]] + r[f(x)r[f(a)r[f(uj)]]] 

+ . . . . (A-6) 

The first term in the parentheses is I, the unit matrix. The second term 

is the integral of the F(à) between limits t and t. The third term is 

found by premultiplying r[F(a)] by F(X) and then integrating this 

product between limits t and t. The other terms are found in like 

manner. 

If elements of F(\) remain bounded between limits of integration, 

then this series is absolutely and uniformly convergent. This series 

defines a square matrix A(F) which is called the matrizant as 

A(F) = I + r(F) +r[Fr(F)] + r[Fr[Fr(F)]] + • • • . (A-V) 

If both sides of the above equation are differentiated with respect 

to t, the fundamental property of the matrizant 

^ A(F) = FA(F) (A-8) 

is obtained. Therefore this A(F) is indeed the solution to equation 

(A-1), and as such represents the desired state transition matrix for 

the time-varying system. Thus 
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flJ(t, T )  =  A(F), (A-9) 

or 

L(t) =  A(F)L(T )  = «S(t, T )L( T )  . (A-10) 

For a small integral interval, the matrizant (A-7) is approximated 

with the first order term. This follows 

a (n+l)T,nT] ̂  1 + TF(nT) , (A-11) 

where T is the time interval from T  to t. 
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XI, APPENDIX B 

Basic arithematic units are described in this appendix. Three 

basic operations to be realized in the implementation of a digital 

filter are delay, addition (or subtraction), and multiplication. Serial 

-1 
delays (z ) are realized simply as single-input single-output shift 

registers. Serial full adders are used for additions and serial-parallel 

multipliers are employed for digital implementations. 

A. Shift Register 

A register is defined as a device which is capable of storing 

information. The register illustrated in Figure B.l consists n storage 

devices, each a flip-flop. In this register, the binary bit stored in 

each flip-flop will be shifted one place to the right each time a clock 

pulse is applied. A register that is constructed in this manner is 

called a shift register. 

The sequence of signals representing the numbers to be read in is 

connected to the input lines at the left in Figure B.l. Each time a 

bit is to be read into the register, a clock pulse is applied. This 

causes all the bits in the register to be shift right, and the new bit 

to be stored in the leftmost storage device. If the series of signals 

representing the number to be read in are contained on a single line, 

an inverter may be used to form the necessary wave shape for the other 

input line since there are two input lines to the register. 

If a steady train of clock pulses is applied to the shift register 

input line, the input waveform will be reproduced at the outputs from 
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the register after a number of clock pulses equal to the number of 

storage devices (bits) in the register have been applied. If the clock 

pulses are spaced 2 p,sec apart, the length of the register is 12 bits, 

the input waveform will appear at the output from the shift register 

after a delay of 24 jj,sec. The outputs from the flip-flops will be in 

essentially d-c form; however, the d-c signals may be converted to 

pulses with the width and amplitude of the clock pulses by connecting 

AND gate to the 1 output of the last flip-flop and pulsing it with the 

clock pulses (refer to Figure B.l). 

B. Serial Operation of Full Adder 

The inputs to the serial adder consist of two numbers, the addend 

and augend, each represented by a series of signals. Figure B.2 

illustrates a block diagram of a serial adder and set of input and 

output waveforms. The inputs to the full adder are, for instance, 

cant bits of numbers to be added are the rightmost parts of the wave

forms in Figure B.2. The most significant bits are leftmost bits. The 

signals representing the least significant bits of two numbers being 

added arrive at the adder first because the carry bit must be added in 

with the next least significant pair of augend-addend bits. 

There is a delay line in the carry loop. This delay is equal to 

one bit time, or the delay which occurs between successive bits to be 

added. In this manner the caries from the least significant bits are 

propagated to the most significant bits, just as in the parallel adder. 
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For instance, in Figure B.2, a carry occurs when both the second and 

the third least significant bits of augend and addend are added. This 

carry is delayed and added in with the next pair of addend-augend bits. 

C. 2's Complement System 

Since the 2's complement system has the advantage of not requiring 

an end-around carry during addition, inputs of the serial full adder are 

used in this system. It is also possible to construct a complementer 

for serial machines which will form the 2's complement of a serial 

number as it passes through the complementer. Because it is easy to 

form 2's complements in serial machines, this system is most used. 

The circuit in Figure B.3 complements every bit which passes after 

not including, the first 1. For instance, if binary 1010 is the number 

to be complemented, the complementer will first receive a 0, then 1, 

then another 0, and finally a 1. The circuit will not complement to 0, 

nor will it complement the first 1 it receives, but it will complement 

every bit thereafter. The final complemented number will be 0110, the 

2's complement of 1010. 

The flip-flop must be reset before the circuit is used to form 2's 

complement of another number. 

D. Serial-parallel Multiplier 

To reduce the multiplication time in a serial arithematic unit, 

the serial-parallel multiplier should be considered. The required 

binary multiplication is performed by successive shifting and addition. 



www.manaraa.com

136 

input 

JTTL.. 
inverter output 

clear 
line 

1 bit delay 

Figure B.3. Serial 2's complement circuit 



www.manaraa.com

137 

The logic is controlled by the multiplier binary digits. When the 

multiplier and the multiplicand are represented with 2's complements, 

and when one inverter, AND gate, OR gate, and flip-flop are added, 

sign bits of two inputs need not to be picked up and stored specially 

at the beginning. Hence the serial-parallel multiplier is also supplied 

with 2's complement inputs. 

In the multiplication process, if the specific binary bit is a 1, 

the multiplicand of an appropriate weight is added to the sum of the 

partial product, and if the multiplier bit is 0, no addition is performed. 

The multiplier does not care about the length of the input data word, 

but it does need a signal on one control line to signify the start of 

the data word and a second pulse to alert it to the sign bit (last bit) 

of the input. The bit rate of this data input can be between 10 kcps 

and 1.5 Mcps when the scaling coefficient is a word of up to eight data 

bits in length, plus sign. 

The basic circuit for multiplying the two nur.bers is shcvm in 

Figure B.4. The multiplicand (a^ through a^^^) is stored in the set 

ofN +1 flip-flops that from the memory section, a^^^ being the least 

significant bit, and a^ being sign bit. The multiplier appears serially 

on the indicated input line with the least significant bit appearing 

first with input having 2's complement. This implementation requires 

N full adders. 

When a 1 bit appears on the multiplier serial input line, the stored 

multiplicand is gated to the adders through AND gates except the a^ 

section. The sums generated by the adders are delayed 1-bit time and 
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are used as inputs to the next adders. The carries from the adders are 

stored in the 1-bit delay elements, the outputs of which are fed back 

into the adders during the next clock time. When a 0-bit appears, all 

zeros are added to the 1-bit right-shifted partial sum. The most 

significant bit of the product will appear at the output gate during 

clock time M+N + 1. This timing chart is also shown in Figure B.4. Here 

the serial multiplier input after M + 1 data bits is N + 1 times of the 

sign bit. They are added by the machine with one AND, OR, DELAY, and 

flip-flop units. 

As the addition or shift is being performed, the product bits 

become available at the output gate, one bit at each bit time. The 

multiplication is completed in one word time, during which the least 

significant half of the product is delivered at the output gate when 

used the same length of multiplier and multiplicand words. The most 

significant half is in the shift registers being added with duplicating 

sign bits. It takes another one word time to shift its contents out 

of the multiplier. Therefore, the multiplication takes total of two 

word times without one word time for storing the multiplicand. 
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XII. APPENDIX C 

This appendix derives the simple discrete Kalman-Bucy derived filter 

equation given by equation (6-10) from equations (6-7) and (6-8). 

The matrix state equation (6-7) is noted as a set of first-order 

-1 . 
d ifference equations where the delay operator z is used as ^ = 

z ̂  I . They are 

 ̂ — 2̂  a *"1 ̂ 
= 2  § ^ + t z  § 2  

a _1a _1a 
^2 = z ^2 + ^3 

3 = z + Tz (for m = 1, 2, k-1) (C-1) 
m. m ilttl 

a  - l a  . t a  
- 2 + tz k-1 =k-l 

and 

= ê (nt)z"̂ §\ + 82(nt)z"l§2 + ' ' ' + 9̂ (nt)z"̂ §̂  + • 

Note that the n-l|n-l and n|n subscripts have been omitted for 

convenience. Making arrangements such that the same state in each 

equation except the last equation is summed and arranged, the first 

(k-1) equations become 
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I 1 - z 

î . t:"' ( 
h 1 . ,-i 

A Tz~^ * 

Sm • 7^ 5^1 
1 - z 

-1 Tz A 
il, • =k-l , _ ,-l 

tz"̂  
As can be seen, the term r is common to all equations and one 

1 - z~ 

state is a multiplication of this common term with the next state. 

Consequently, every state can be written in terms of one common state, 

A 
such as E.. These are shown as 

" k 

I = 
1 - z 

4 = 
I -  Z 

5M =  (C.3)  
1  -  Z 
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Note that (k-1) states have simple relationships with the last state 

A 

in this procedure. Now substituting (C-3) into the last equation of 

(C-1), leads to 

+ 92(nt)z'̂ -̂ 5_)k-2â  + . . • 
1 - z 1 - z 

+ - e,.,(nx,rV̂ )5\ 
1 - z 1 - z 

+ 0j^(nT)z"^§j^ + Ty^ . (C-4) 

This is equivalent to 

{1 - 0 (nT)z"^(-^2_^)k-l _ Q (nT)z~^( . 
 ̂ 1 - z'l 2 1 _ z-1 

-
1 - z 1 - z 

- 9^(nT)z-ME^ = Ty^ . (C-5) 

A 
Simplifying the above equation, a simple solution for is obtained 

such that 

1 - i £ 9.(nI).-\-j4r)'"'5 ' 
i=l ^ 1 - z 

Therefore, the rest of states are solved by substituting (C-6) into 

equations (C-3). These become 
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1 - { z 0 (nt)z-\— 
1=1 ̂  1 - z 

i=l 1 - z 

- 1  
X Tz .k-m 
^ -1-' 
1 - z 

'm ' k : ^ -1 . . 
1 -{ E 9 (nT)z'^( )'"'•} 

i=l ^ 1 - z 

(C-7) 

1 - { e 8 (nt)z-\-2s:̂ )k-i] 
i=l ^ 1 - z" 

Now, from the output equation (6-8), the output can be written 

in terms of input as follows. 
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xn = [̂ (̂nt) &i(nl) ••• p̂ (nt) ••• p̂ _̂ (nt) p̂ ĉnt)] 

=z p._̂ (nt)§ 
i=l 

m 

k-1 

k 
n n 

[ e ei_i(nt)(  ̂
i=l 1 - z 

1 - { e 8 (nt)z-l(  ̂)k-i} 
i=l 1 1 - z"^ 

Ty_ (C-8) 

Here, the subscript n|n is omitted for simplicity again. Then the input-

output relationship is represented as W^(z) such that 

I{ E p..^(nT)( 

^ 
1 - t E e.(nT)( }z" 

i=l ^ I - z 

-1 
where the z term in the denominator has been taken out from the 

parenthesis. 
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_ 1  
The resulting equation (C-9) is going to be simplified for (1 - z ) 

tz"̂  
term. Since the highest term of ( r) in the numerator of the above 

1 - z" 

equation (C-9) is when i = l, that is the order of (k-1), ( —:r)^ ̂  
1 - z" 

is divided such that 

( )̂̂ "̂ t[ i p int)(tz-l)k-i( 

z - ( Z 0.(nT)(Tz"b^"^( 
1 - z i=l 1-z 

(C-10) 

This reduces the final form of W^Cz) as 

T[ Z p ,(nT)(Tz"l)k-i(l _ 
i=l 

wjj(z) ; ; 

(1 - - { z 8.(nT)(Tz"l)k-i(l _ z"^)'-'^}z"^ 
i=l "• 

(C-11) 

which is vequation (6-10)« 
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XIII. APPENDIX D 

A. sample printout of the computer program which was used to conduct 

the simulation studies in the third order low-pass filter example follows 

in this appendix. This program simulates sampled-data digital filters 

and calculates frequency responses of those filters. Continuous filter 

amplitude was found first and compared to the others. Three frequencies 

as shown in Table 6.1 are studied specifically. Initial conditions in 

this simulation are modified and set to converse steady states within 

short period of time. 
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C  F R E Q U E N C Y  R E S P O N S E S  O F  T H E  T H I R D  O R D E R  F I L T E R  I N  E X A M P L E  4  
C  T H I S  P R C G R A M  C O M P U T E S  F R E Q U E N C Y  R E S P O N S E S  W I T H  A  G I V E N  S I N U S O I D A L  
C  I N P U T  Y ( I N P U T )  A N D  A  S A M P L I N G  I N T E R V A L  D E L T A T  
C  L  I N D I C A T E S  N U M B E R  O F  F R E Q U E N C Y  P O I N T S  T O  B E  C O M P U T E D ,  M  I N D I C A T E S  
C  N U M B E R  O F  S A M P L I N G  P O I N T S  W I T H I N  O N E  I N P U T  P E R I O D ,  A N D  N  I N D I C A T E S  
C  N U M B E R  C F  D A T A  P O I N T S  
C  I N I T I A L  C O N D I T I O N S  D E L A Y ( I )  A R E  C H O S E N  S U C H  T H A T  T H E  F I L T E R  
C  C O N V E R G E S  I T S  S T E A D Y  S T A T E  I N  S H O R T  P E R I O D  O F  T I M E  
C  

D O U B L E  P R E C I S I O N  A ( 3 , 3 ) ,  A M P L I T ( 5 , 3 ) ,  C O N S ^ T ( l l ) ,  D E L A Y ! 3 ) ,  D E L T A T  
I ,  F ( 3 , 3 ) ,  F R E Q C Y ( 3 ) ,  G A I N ,  O M E G A ,  P I ,  S T A T E ( 3 ) ,  T W O P I ,  X ,  X M A X  
1 ,  X M I N ,  X T O P ,  Y ( 2 0 )  

D O U B L E  P R E C I S I O N  D C O S ,  D E X P ,  D L O G I O ,  D M A X I ,  D M I N I ,  D S I N ,  D S Q R T  
I N T E G E R  I N C R E M ( 3 ) ,  M ( 3 )  

C  
C  R E A D  C O N S T A N T S  A N D  S I N U S O I D A L  I N P U T  
C  

R E A D  ( 5 , 1 0 )  L ,  N ,  D E L T A T  
1 0  F O R M A T  ( 2 ( 1 0 X , I 5 ) , 1 0 X , F 1 2 . 5 )  

R E A D  ( 5 , 1 1 )  ( M ( I ) , I = l , L )  
1 1  F O R M A T  ( 3 ( 1 0 X , I 5 ) )  

R E A D  ( 5 , 1 2 )  ( F R E Q C Y ( I ) , I = l , L )  
1 2  F O R M A T  ( 3 ( l O X , F 1 2 . 5 ) )  

J = M ( 1 )  
R F A D  ( 5 , 1 3 )  ( Y ( I ) , 1 = 1 , J )  

1 3  F O R M A T  ( 1 0 X , D 2 3 . 1 6 )  
P I = +  3 .  1 4 1 5 9 2 6 5 3 5 8 5 7 9 3  
T W O P  I =  +  2 . 0 * P I  
D O  1 4  K = 1 , L  
I N C R E M ( K ) = M ( 1 ) / M ( K )  

1 4  C O N T I N U E  
C  
C  E N T E R  A M P L I T U D E  R E S P O N S E S  O F  T H E  C O N T I N U O U S  F I L T E R  
C  

W R I T E  ( 6 , 1 0 0 )  
1 0 0  F O R M A T  ( « l ' / / / 6 X , « A M P L I T U D E  R E S P O N S E S  O F  T H E  C O N T I N U O U S  F I L T E R ' / / /  
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C 0 N S N T ( 2 ) = + 1 . 0 - C 0 N S N T ( 1 )  
C O N S N T I 3 ) = + 1 . 0 + C 0 N S N T { 1 )  
C 0 N S N T ( 4 )  =  C 0 N S N T ( l ) + C O N S N T ( 2 ) * C O N S N T ( 2  )  
C O N S N T I 5 ) = D S Q R T ( C O N S N T ( 3 ) )  
C 0 N S N T ( 6 ) = D S Q R T ( C 0 N S N T ( 4 ) )  
G A I N = + 1 . 0 / C 0 N S N T ( 5 ) / C 0 N S N T ( 6 >  
A M P L I T I  1 , K ) = - 2 0 . 0 * 0 L 0 G 1 0 ( ( : 0 N S N T ( 5 )  ) - 2 0  . 0 * D L 0 G 1  0 (  C O N S N T  (  6  )  I  
W R I T E  ( 6 , 1 0 1 )  F R E Q C Y ( K ) ,  O M E G A ,  G A I N ,  A M P L I T ( 1 , K )  

1 0 1  F O R M A T  ( 1 X , F 1 2 . 5 , 5 X , F 1 2 . 5 , 2 ( 5 X , D 2 3 . 1 6 ) )  
1 0 2  C O N T I N U E  

C  
C  E N T E R  T H E  D I S C R E T E  K A L M A N - B U C Y  D E R I V E D  F I L T E R  R E S P O N S E S  
C  

A ( l , l ) =  +  1 . 0  
A ( l , 2  )  =  C E L T A T  
A ( l , 3 ) = C . O  
A ( 2 , 1 ) = A I 1 , 3 )  
A ( 2 , 2 ) = A ( 1 , 1 )  
A ( 2 , 3 ) = A ( 1 , 2 )  
A ( 3 ,  1  )  =  A ( I ,  3 )  
A ( 3 , 2 ) = - 2 . 0 * D E L T A T  
A ( 3 , 3 ) = A ( 1 , 1 )  
D O  2 0 0  1 = 1 , 2  
D O  2 0 0  J = l , 3  
F (  I , J )  =  A ( I , J )  

2 0 0  C O N T I N U E  
F ( 3 , 1 ) = - D E L T A T » A ( 1 , 1 ) + ( 1 . 0 - 2 . 0 * D E L T A T ) * A | 3 , 1 )  
F ( 3 , 2 ) = - D E L T A T * A ( 1 , 2 ) + ( 1 . 0 - 2 . 0 * D E L T A T ) * A ( 3 , 2 )  
F ( 3 , 3 ) = - D E L T A T * A ( 1 , 3 ) + ( 1 . 0 - 2 . 0 * D E L T A T ) * A I 3 , 3 )  
W R I T E  ( 6 , 2 0 1 )  ( ( A ( I , J )  , J  =  l , 3 ) , 1 = 1 , 3 ) ,  (  ( F ( I , J ) , J = 1 , 3  ) , 1  =  1 , 3 )  

2 0 1  F O R M A T  ( ' l ' / / / 6 X , ' D I S C R E T E  K A L M A N - B U C Y  D E R I V E D  F I L T E R ' / / / 6 X , ' S T  A T E  
1  T R A N S I T I O N  M A T R l X ' / / 3 ( 3 ( 5 X , D 2 3 . 1 5 ) / ) / / / 6 X , ' C O E F F I C I E N T  M A T R I X ' / / 3  
1 ( 3 ( 5 X , D 2 3 . 1 6 ) / ) )  
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2 0 2  F O R M A T  ( 5 X , 3 0 2 3 . 1 6 )  
W R I T E  ( 6 , 2 0 3 )  F R E Q C Y ( K ) ,  ( D E L A Y * I ) , 1 = 1 , 3 )  

2 0 3  F O R M A T  ( • 1 • / / / 6 X , ' T H E  D I S C R E T E  K A L M A N - B U C Y  F I L T E R  R E S P O N S E  A T  F R E Q  
l U E N C Y ' , F 1 2 . 5 / / / 6 X , " I N I T I A L  C O N D I T I O N S • / / 3 ( 5 X , 0 2 3 . 1 6 ) / / / 4 X , • N ' , 2 X , •  
I M S  I  O X , ' I N P U T ' , 1 8 X , ' O U T P U T ' , 1 8 X , ' S T A T E  l ' , 1 7 X , ' S T A T E  2 ' , 1 7 X , ' S T  A T E  
I  3 '  )  

I N C R E A = 0  
I N P U T = 0  
X M A X = 0 . 0  
X M I N = 0 . 0  
X T O P = 0 . 0  
D O  2 0 7  J = 1 , N  
I N C R E A = I N C R E A + 1  
I N P U T = I N P U T + I N C R E M ( K )  
I F  ( I N C R E A . L E . M ( K ) )  G O  T O  2 0 4  
I N C R E A = l  
I N P U T = I N C R E M ( K )  

2 0 4  C O N T I N U E  
S T A T E ( 1  ) = F ( l , l ) * 0 E L A Y ( l ) + F ( l , 2 ) * 0 E L A Y ( 2 ) + F ( 1 , 3 ) * D E L A Y ( 3 )  
S T A T E ( 2 )  =  F (  2 ,  1 ) * D E L A Y (  1 ) + F ( 2 , 2 ) * D E L A Y ( 2 ) + F (  2 , 3 ) * D E L A Y ( 3 )  
S T A T E ( 3 ) = F ( 3 , 1  ) * D E L A Y ( 1 ) + F ( 3 , 2 ) * D E L A Y ( 2 ) + F (  3 , 3 ) * D E L A Y (  3 )  

1 + D E L T A T * Y ( I N P U T )  
X = S T A T E ( 1 )  
D C  2 0 5  1 = 1 , 3  
D E L A Y ! I  )  =  S T A T E (  I  )  

2 0 5  C O N T I N U E  
W R I T E  ( 6 , 2 0 6 )  J ,  I N C R E A ,  Y ( I N P U T ) ,  X ,  ( S T A T E ( I ) , I = 1 , 3 )  

2 0 6  F O R M A T  ( I X , I  4 , I X , I  2 , 5 (  I X , D 2 3 . 1 6 ) )  
I F  ( J . L T . N - M ( K ) )  G O  T O  2 0 7  
X M A X = D M A X 1 (  X M A X ,  X I  
X M I N = 0 M I N 1 ( X M I N , X )  
X T 0 P = 0 M A X 1 ( X T O P , X M A X , - X M I N )  

2 0 7  C O N T I N U E  
A M P L I T ( 2 , K ) = + 2 0 . 0 * D L O G l O ( X T O P )  
W R I T E  ( 6 , 2 0 8 )  F R E Q C Y ( K ) ,  F R E Q C Y ( K ) ,  A M P L I T ( 2 , K )  
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2 0 8  F O R M A T  ( / / / / / 6 X , ' A M P L I T U D E  R E S P O N S E  O F  T H E  D I S C R E T E  K A L M A N - B J C Y  D E  
• R I V E D  F I L T E R  A T  F R E Q U E N C Y ' , F 1 2 . 5 / / / 6 X , ' F R E Q U E N C Y ' , 3 X , ' A M P L I T U D E  ( D  
I B ) • / / 1 X , F 1 2 . 5 , 5 X , D 2 3 . I 6 )  

2 0 9  C O N T I N U E  

E N T E R  T H E  I M P U L S E  I N V A R I A N T  Z - T R A N S F O R M  D E R I V E D  F I L T E R  R E S P O N S E S  

C O N S N T ( I I = - 0 E L T A T / 2 . 0  
C O N S N T ( 2 ) = + 3 . 0  
C O N S N T I 3 ) = 0 E L T A T * D S 0 R T I C 0 N S N T l 2 ) ) / 2 . 0  
C C N S N T ( 4 ) = - D E L T A T  
C 0 N S N T ( 5 ) = D E X P I C 0 N S N T ( 1 ) )  
C 0 N S N T ( 6 ) = D C 0 S ( C O N S N T I 3 ) )  
C O N S N T ( 7 ) = D S I N { C G N S N T ( 3 ) ) / D S Q R T ( C O N S N T ( 2 ) )  
C 0 N S N T ( 8 ) = D E X P ( C 0 N S N T ( 4 ) )  
C 0 N S N T ( 9 ) = + 2 . 0 * C 0 N S N T ( 5 ) * C 0 N S N T ( 6 )  
C O N S N T I 1 0 ) = C 0 N S N T ( 8 )  
C O N S N T ( l l ) = C O N S N T { 5 ) * ( C O N S N T ( 6 ) + C 3 N S N T ( 7 ) )  
W R I T E  ( 6 , 3 0 0 )  ( C C N S N T I I ) , 1 = 8 , 1 1 ) ,  D E L T A T  

3 0 0  F O R M A T  ( ' I ' / / / 6 X , • T H E  I M P U L S E  I N V A R I A N T  Z - T R A N S F O R M  D E R I V E D  F I L T E R  
I » / / / 6 X , ' D E N O M I N A T O R  C 0 E F F I C I E N T S ' / / 3 ( 5 X , D 2 3 . 1 6 ) / / / 6 X , ' N U M E R A T O R  C O  
l E F F I C I E N T ' / / 5 X , D 2 3 . 1 6 / / / 6 X , ' G A I N ' / / 5 X , D 2 3 . 1 6 )  

0 0  3 0 8  K = 1 , L  
R E A D  ( 5 , 3 0 1 )  ( D E L A Y ( I ) , 1 = 1 , 3 )  

3 0 1  F O R M A T  ( 5 X , 3 0 2 3 . 1 6 )  
W R I T E  ( 6 , 3 0 2 )  F R E Q C Y ( K ) ,  ( D E L  A Y ( I ) , I  =  1  , 3 )  

3 0 2  F O R M A T  ( ' 1 ' / / / 6 X  ,  • T H E  I M P U L S E  I N V A R I A N T  Z - T R A N S F O R M  D E R I V E D  F I L T E R  
1  R E S P O N S E  A T  F R E Q U E N C Y ' , F 1 2 . 5 / / / 6 X , * I N I T I A L  C O N D I T I O N S ' / / 3 ( 5 X , D 2 3 .  
1 1 6 ) / / / 4 X , ' N ' , 2 X , ' M ' , 1 0 X , ' I N P U T ' , 1 8 X , ' O U T  P U T ' , 1 8 X , ' S T A T E  l ' , 1 7 X , ' S T  
l A T E  2 » , 1 7 X , • S T A T E  3 ' )  

I N C R E A = 0  
I N P U T = 0  
X M A X = 0 . 0  
X M I N = 0 . 0  
X T 0 P = 0 . 0  
D O  3 0 6  J = 1 , N  
I N C R E A = I N C R E A + 1  
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I N P U T = I N P U T + I N C R E M ( K )  
I F  {  I N C P E A . L E . M ( K ) )  G O  T O  3 0 3  
I N C R E A = 1  
I N P U T = I N C R E M ( K )  

3 0 3  C O N T I N U E  
S T A T E ( 1 ) = C 0 N S N T ( 8 ) * ] E L A Y ( ] ) + D E L T A T * Y ( I N P U T )  
S T A T E ( 2  )  =  C 0 N S N T ( 9 ) * O E L A Y { 2 ) - C 0 N S N T ( 1 0 ) * D E L A Y ( 3 ) + D E L T A T * Y ( I N P U T )  
S T A T E ! 3 ) = D E L A Y ( 2 )  
X = S T A T E (  1 ) - S T A T E ( 2 ) + C 0 N S N T (  1 1 ) « S T A T E  (  3 )  
D O  3 0 4  1 = 1 , 3  
D E L A Y ! I ) = S T A T E ( I )  

3 0 4  C O N T I N U E  
W R I T E  ( 6 , 3 0 5 )  J ,  I N C R E A ,  Y ( I N P U T ) ,  X ,  ( S T A T E ! I ) , 1 = 1 , 3 )  

3 0 5  F O R M A T  ( I X , 1 4 , I X , I  2 , 5 ( I X , 0 2 3 . 1 6 ) )  
I F  ( J . L T . N r M ( K I )  G O  T O  3 0 6  
X M A X = D M A X 1 ( X M A X , X )  
X M I N = D M I N 1 ( X M I N , X )  
X T 0 P = D M A X 1 ( X T O P , X M A X , - X M I N )  

3 0 6  C O N T I N U E  
A M P L I T ( 3 , K ) = + 2  0 . 0 * D L O G 1 0 ( X T O P )  
W R I T E  1 6 , 3 0 7 )  F R E Q C Y ( K ) ,  F R E Q C Y ( K ) ,  A M P L I T ( 3 , K )  

3 0 7  F O R M A T  ( / / / / / 6 X , ' A M P L I T U D E  R E S P O N S E  O F  T H E  I M P U L S E  I N V A R I A N T  Z - T R A  
I N S F O R M  D E R I V E D  F I L T E R  A T  F R E Q U E N C Y • , F 1 2 . 5 / / / 6 X , • F R E Q U E N C Y ' , 3 X , • A M P  
I L I T U D E  ( D B ) ' / / 1 X , F 1 2 . 5 , 5 X , D 2 3 . 1 6 )  

3 0 8  C O N T I N U E  
C  
C  E N T E R  T H E  B I L I N E A R  Z - T R A N S F O R M  D E R I V E D  F I L T E R  R E S P O N S E S  
C  

C O N S N T (  1 ) = + 1 . 0 + D E L  T A T / 2 , 0  +  D E L T A T * 0 E L T A T / 4 . 0  
C C N S N T ( 2 )  =  (  +  1 . 0 - D E L T A T / 2 . 0 ) / (  + 1 . 0 + - D E L T  A T / 2  .  0 )  
C C N S N T ( 3 ) =  +  2 . 0  4 ( + l . 0 - D E L T A T * D E L T A T / 4 . 0  ) / C O N S N T ( 1 )  
C O N S N T ( 4 ) = ( + 1 . 0 - D E L T A T / 2 . 0 + D E L T A T * D E L T A T / 4 . 0 ) / C O N S N T d )  
C C N S N T ( 5 ) = + 2 . 0  
C O N S N T I 6 ) = D E L T A T * D E L T A T * D E L T A T / ( + 8 . 0 * ( + 1 . 0 + D E L T A T / 2 . 0 ) « C O N S N T ( 1 ) )  
W R I T E  ( 6 , 4 0 0 )  ( C O N S N T ( I ) , 1 = 2 , 6 )  

4 0 0  F O R M A T  ( • 1 • / / / 6 X , ' T H E  B I L I N E A R  Z - T R A N S F O R M  D E R I V E D  F  I L T E R ' / / / 6 X  ,  •  D  
l E N O M I N A T O R  C O E F F I C I E N T S ' / / 3 ( 5 X , 0 2  3 . 1 6 ) / / / 6 X , ' N U M E R A T O R  C O E F F I C I E N T  
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l ' / / 5 X , D 2 3 . 1 6 / / / 6 X , • G A I N ' / / 5 X , 0 2 3 . 1 6 )  
D O  4 0 8  K = 1 , L  
R E A D  ( 5 , 4 0 1 )  ( D E L A Y {  I  )  ,  I  =  l . , 3 )  

4 0 1  F O R M A T  I 5 X , 3 D 2 3 . 1 6 )  
W R I T b  (  6 , 4 0 2 )  F R E 3 C Y ( K ) ,  ( D E L A Y ! I  1 , 1  =  1 , 3 )  

4 0 2  F O R M A T  (  • 1 • / / / 6 X , • T H E  B I L I N E A R  Z - T R A N S F O R M  D E R I V E D  F I L T E R  R E S P O N S E  
1  A T  F R E Q U E N C Y '  , F 1 2 . 5 / / / 6 X , ' I N I T I A L  C O N D I T I O N S • / / 3  I 5 X , 0 2 3 . 1 6 ) / / / 4 X ,  
l ' N ' , 2 X , « M » , l O X , ' I N P U T ' , 1 8 X , ' O U T P U T ' , 1 8 X , • S T A T E  1 1 7 X , • S T A T E  2 ' , 1 7  
I X , ' S T A T E  3 ' )  

I N C R E A = 0  
I N P U T = 0  
X M A X = 0 . 0  
X M I N = 0 . C  
X T 0 P = 0 . 0  
D O  4 0 6  J = 1 , N  
I N C R E A = I N C R E A + 1  
I N P U T = I N P U T + I N C R E M ( K )  
I F  ( I N C R E A . L E . M ( K ) )  G O  T O  4 0 3  
I N C R E A =  1  
I N P U T = I N C R E M ( K )  

4 0 3  C O N T I N U E  
S T A T E ( 1 ) = C 0 N S N T ( 2 ) * D E L A Y ( 1 ) + C 0 N S N T ( 6 ) * Y ( I N P U T )  
C O N S N T ( 7 ) = S T A T E ( l ) + D E L A Y ( l )  
S T A T E ( 2  ) = C O N S N T ( 3 ) * D E L A Y ( 2 ) - C O N S N T ( 4 ) * D E L A Y ( 3 ) + C O N S N T ( 7 )  
S T A T E ( 3 ) = 0 E L A Y ( 2 )  
X = S T A T E ( 2 ) + C 0 N S N T I 5 ) * D E L A Y ( 2 ) + D E L A Y { 3  )  
D O  4 0 4  1 = 1 , 3  
D E L A Y ( I  )  =  S T A T E (  I  )  

4 0 4  C O N T I N U E  
W R I T E  ( 6 , 4 0 5 )  J ,  I N C R E A ,  Y ( I N P U T ) ,  X ,  ( S T  A T E (  I  )  , I  =  1 , 3 )  

4 0 5  F O R M A T  ( I X , 1 4 , I X , I  2 , 5 ( I X , 0 2 3 . 1 6 ) )  
I F  ( J . L T . N - M ( K ) )  G O  T O  4 0 6  
X M A X = D M A X 1 ( X M A X , X )  
X M I N = D N I N 1 ( X M I N , X )  
X T 0 P = D M A X 1 ( X T O P , X M A X , - X M I N )  

4 0 6  C O N T I N U E  
A M P L I T ( 4 , K ) =  +  2 0 . 0 * D L 0 G 1 0 ( X T 0 P )  
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W R I T E  ( 6 , 4 0 7 )  F R E Q C Y ( K ) ,  F R E Q C Y ( K ) ,  A M P L I T ( 4 , < )  
4 0 7  F O R M A T  ( / / / / / 6 X y ' A M P L I T U D E  R E S P O N S E  O F  T H E  B I L I N E A R  Z - T R A N S F O R M  D E  

I R I V E D  F I L T E R  A T  F R E Q U E N C Y " , F 1 2 . 5 / / / 6 X , ' F R E 3 U E N C Y ' , 3 X , ' A M P L I T U D E  ( D  
1 3 )  • / / I X , F 1 2 .  5 ,  5 X , 0 2 3 .  1 6 )  

4 0 8  C O N T I N U E  

E N T E R  T H E  M A T C H E D  Z - T R A N S F O R M  D E R I V E D  F I L T E R  R E S P O N S E  

C O N S N T (  1 )  =  - D E L T A T  
C 0 N S N T ( 2 ) = - D E L T A T / 2 . 0  
C O N S N T ( 3 ) = + 3 . 0  
C O N S N T I 4 ) = D E L T A T * D S Q R T ( C 0 N S N T ( 3 ) ) / 2 . 0  
C O N S N T ( 5 ) = D E X P ( C O N S N T ( 1 ) )  
C 0 N S N T ( 6 ) = + 2 . 0 * D E X P ( C 0 N S N T ( 2 ) ) * D C 0 S ( C 0 N S N T ( 4 ) )  
C C N S N T ( 7 ) = C 0 N S N T 1 5 )  
C 0 N S N T ( 8 l = n E L T A T * D E L T A T * D E L T A T  
W R I T E  (  6 ,  5 0 0 )  ( C O N S N T (  I )  ,  I  = 5 , 8 )  

5 0 0  F O R M A T  ( • I • / / / 6 X , • T H E  M A T C H E D  Z - T R A N S F O R M  D E R I V E D  F I L T E R ' / / / 6 X , ' D E  
I N O M I N A T C R  C O E F F I C I E N T S • / / 3 ( 5 X , 0 2 3 . 1 6 ) / / / 6 X , • G A I N • / / 5 X , 0 2 3 . 1 6 )  

D O  5 0 8  K = 1 , L  
R E A D  ( 5 , 5 3 1 )  ( D E L A Y !  I )  , 1  =  1 , 3 )  

5 0 1  F O R M A T  ( 5 X , 3 0 2 3 . 1 6 )  
W R I T E  (  6 , 5 0 2 )  F R E Q C Y ( K ) ,  ( D E L  A Y ( I ) , I  =  1 , 3 )  

5 0 2  F C R M A T  ( • 1 ' / / / 6 X , • T H E  M A T C H E D  Z - T R A N S F O R M  D E R I V E D  F I L T E R  R E S P O N S E  
l A T  F R E Q U E N C Y ' , F 1 2 . 5 / / / 6 X , '  I N I T I A L  C O N D I T I  O N  S ' / / 3 ( 5 X , D 2 3 . I  6 ) / / / 4 X , '  
1 N ' , 2 X , ' P ' , 1 0 X ,  ' I N P U T ' ,  1 8 X , ' O U T P U T ' , I B X , ' S T A T E  l ' , 1 7 X , ' S T A T E  2 ' , 1 7 X  
1  ,  ' S T A T E  3 '  )  

I N C R E A = 0  
I N P U T = 0  
X M A X = O . Û  
X M I N = 0 . 0  
X T O P = 0 . C  
D O  5 0 6  J = 1 , N  
I N C R E A =  I N C R Ë A + - 1  
I N P U T = I N P U T + I N C R E M ( K )  
I F  ( I N C R E A . L E . M ( K ) )  G O  T O  5 0 3  
I N C R F A =  1  
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I N P U T = I N C R E M ( K )  
5 0 3  C O N T I N U E  

S T A T E ! I ) = C 0 N S N T ( 5 ) * D E L A Y ( l ) + C O N S N T ( 8 ) * Y ( I N P U T )  
S T A T E ( 2 ) = C 0 N S N T ( 6 ) * D E L A Y ( Z ) - C 0 N S N T ( 7 ) *  D E L A Y ( 3 ) + S T A T E ( 1 )  
S T A T E ( 3 ) = D E L A Y ( 2 )  
X = S T A T E ( 2 )  
00 504 1=1,3 
D E L A Y ( I  )  =  S T A T E (  I  )  

5 0 4  C O N T I N U E  
W R I T E  ( 6 , 5 0 5 )  J ,  I N C R E A ,  Y ( I N P U T ) ,  X ,  ( S T A T E ( I ) , I = 1 , 3 )  

5 0 5  F O R M A T  ( I X , 1 4 , 1 X , I  2 , 5 ( 1 X , 0 2 3 . 1 6 ) )  
I F  ( J . L T . N - M ( K  )  )  G O  T O  5 0 6  
X M A X = D M A X 1 ( X M A X , X )  
X M I N = D M I N l ( X M I N , X )  
X T 0 P = D M A X 1 ( X T O P , X M A X , - X M I N )  

5 0 6  C O N T I N U E  
A M P L l T ( 5 , K ) = + 2 0 . 0 * O L O G l O ( X T O P )  
W R I T E  ( 6 , 5 0 7 )  F R E Q C Y ( K ) ,  F R E Q C Y ( K ) ,  A M P L I T ( 5 , K )  

5 0 7  F C R M A T  ( / / / / / 6 X , ' A M P L I T U D E  R E S P O N S E  O F  T H E  M A T C H E D  Z - T R A N S F O ^ M  D E R  
L I V E D  F I L T E R  A T  F R E Q U E N C Y ' , F  1 2 . 5 / / / 6 X , ' F R E Q U E N C Y ' , 3 X , ' A M P L I T U D E  ( O B  
1  ) ' / / l X , F 1 2 . 5 , 5 X , D 2 3 . 1 6 )  

5 0 8  C O N T I N U E  
C  
C  A M P L I T U D E  R E S P O N S E S  A R E  S U M M A R I Z E D  
C  

W R I T E  ( 6 , 6 0 0 )  ( F R E O C Y ( K ) , ( A M P L I T d , K )  ,  1 = 1 , 5 ) , K = 1 , L )  
6 0 0  F C R M A T  ( ' l ' / / / 6 X , ' F I D E L I T Y  C 0 M P A R I S I 0 N S ' / / / 6 X , ' F R E Q U E N C Y ' , 4 X , ' C 0 N T  

I I N U O U S  F I L T E R '  , 7 X , ' D  K - B  0  F  I L T E R '  , l O X  , '  I  I  F I L T E R ' , 9 X , ' B I L I N E A R  F  
1 I L T E R » , 8 X , • M A T C H E D  F  I L T E R  V / / ( 3 X , F 1 2 . 5 , 5 ( 2 X , D 2 0 . 1  3 ) / ) )  

S T O P  
E N D  
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L  
M i l )  
frkq.(1) 

3 »  N  
2 0 ,  M ( 2 )  

5  ,  F R E Q . ( 2 )  

1 0 0 ,  D E L T A T  
1 0 ,  ' 1 ( 3 )  

Q . ( 2 )  1 0  
5 
freq.(3 

0 1  

2 0  
Y d )  
Y  ( 2 )  
Y ( 3 )  
Y ( 4 )  
Y ( 5 )  
Y I 6 )  
Y ( 7 )  

+ 0 . 3 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 D  0 0  
• 0 . 5 8 7 7 8 5 2  5 2 2 9 2 4 7 3 1 0  0 0  
+ 0 . 8 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
+ 0 . S 5 1 0 5 6 5 1 6 2 9 5 1 5 3 6 D  0 0  
+ 0. 10000000000000000+01 
+ 0 . 9 5 1 0 5 6 5 1 6 2 9 5 1 5 3 6 0  0 0  
+0.80901699437494 740 00 

Y ( 8 )  + 0 . 5 8 7 7 8 5 2  5 2 2 9 2 4 7 3 1 0  0 0  
Y ( 9 )  + 0 . 3 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
Y ( 1 0 )  O . C O O O O O O O O O O O O O O O O  0 0  
Y ( l l )  - 0 . 3 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
Y ( 1 2 )  - 0 . 5 8 7 7 8 5 2 5 2 2 9 2 4 7 3 1 0  0 0  
Y ( 1 3 )  - 0 . 8 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
Y ( 1 4 )  - 0 . S 5 1 0 5 6 5 1 6 2 9 5 1 5 3 6 0  0 0  
Y ( 1 5 )  - 0 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 1  
Y ( 1 6 )  - 0 . 9 5 1 0 5 6 5 1 6 2 9 5 1 5 3 6 0  0 0  
Y ( 1 7 )  - 0 . 8 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
Y ( 1 8 )  - 0 . 5 8 7 7 8 5 2 5 2 2 9 2 4 7 3 1 0  0 0  
Y ( 1 9 )  - 0 . 3 0 9 0 1 6 9 9 4 3 7 4 9 4 7 4 0  0 0  
Y ( 2 0 )  O . O O O O O O O C O O O O O O O O O  0 0  
0 0 5 + 0 . 3 2 8 3 4 4 7 9 0 1 6 4 3 4 3 9 0 - 0 4 - 0 . 6 5 1 2 1 9 2 9 1 3 4 1 4 1 4 4 0 - 0 4 - 0 . 3 1 5 0 2 9 3 6 1 3 4  7 8 7 6 9 0 - 0 1  
0 1 0 + 0 . 4 1 0 7 7 C 7 6 7 7 2 8 7 8 3 9 D - 0 5 - 0 . 8 1 3 9 0 2 4 6 6 8  7 0 3  4 0 3 0 - 0 5 - 0 . 1 5 3 8 0 1 9 4 5 4 1 0 3 4 2 4  0 - 0 1  
0 2 0 + 0 . 5 0  7 7 3  9  5 9 2 2 2  8  0 1 1 7  0 - 0 6 - 0 . 1 0 0 6 3 9 0 5 7 5 5 1 2 4 6 7 0 - 0 5 - 0 . 6 8 8 0 8 9 3 0 0 5 0 3 2 3 0 6 0 - 0 2  
I  0 5 - 0 .  3 1 5 3 6 5 4 0 0 0 2 8 C l O O D - 0 1 - 0 . 3 4 8 1 3 0 7 4 8 7 3 9 5  7 2 6 0 - 0 1 - 0 .  3 2 4 4 5 1  1 6 9 6 1 5 5  9 4 1 0 - 0 2  
I  1 0 - 0 .  1 5  3  8 4  3  3 9 9 6 6 7 2 9 4 9 D - 0 1 - 0 . I  5 7 9 3 3 9 7 5 8 9 7 2 7 2 1 0 - 0 1 - 0 . 4 0 5 0 0 1 1 0 7 9 4 3 4 2 5 5 0 - 0 3  
I  2 0 - 0 . 6 8  8 1 4 1 1 6 5  4 5 8 1 1 0 3  0 - 0 2 - 0 . 6 9  3 1 9 5 8 4 8  4 0 8 0 7 7 4 0 - 0 2 - 0 . 5 0 0 5 1 4 0 7 8 9 0 5 2 4  0 4 0 - 0 4  
Q Û 5 - 0 .  3 9 0 2 8 4 3 3 6 9 5 7 7 1  7 2 0 - 0 6  + 0 . 7 4 9 5 4 3 4 1 6 9 9 8 7  1 5 0 0 - 0 5 +  0 . 8 0 4 6 4 8 3 7 1  1  1 5 0 7 6 0 0 - 0 5  
B l O - 0 . 1 9 0 3 9 1 4 1 6 2 1 3  3 3 8 9 0 - 0 6 + 0 . 7 9 6 2 2 5 8 6 4 4 3 7 8 1 7 0 0 - 0 6 + 0 . 1 0 0 6 7 0 7 9 7 5 1 7 6 5 4 6 0 - 0 5  
B 2 0 - 0 . 8 5 1 6 1 7 5 9 2 5 2 8 1 2 3 5 0 - 0 7 ^ 0 . 3 6 8 3 7 7 6 6 7 3 6 3 3 6 9 5 0 - 0 7 + 0 . 1 2 4 4 8 3 1 0 9 3 0 2 6 4 6 4 0 - 0 6  
M 0 5 - 0 . 3 1 5 3 6 5 4 0 0 0 2 3 0 1 0 0 0 - 0 5 + 0 . 2 8 3 8 2 2 8 4 0 2 5 8 0 5 3 8 0 - 0 4 + 0 . 3 2 1 8 3 8 2 5 9 3 1 8 1 0 5 1 0 - 0 4  
M 1 0 - 0 . 1 5  3 8 4  3  8 9 9 6 6  7  2 9 4 3  0 - 0  5 + 0 . 2 4 0  7 2 0 9 3 2  8 4 4  5  2 0  2 0 - 0  5 + 0 . 4 0 2  6 6 1 4 5 7 1 8 2 3 6 6 0 0 - 0 5  
M 2 0 - 0 . 6 8 8 1 4  1 1 6 5 4 5  8 1 4 8 2 0 - 0 6 - 0 .  2  0 0 2 4 3 1 1 1 2  3 6 0  3 2  0 0 - 0 6  +  0 . 4 9  7  9 0 6  9 9 4  5  4 6 0 4 3  6 0 - 0 6  
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